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Introduction

Forest stores carbon in the form of biomass (Gibbs et al.,
2007) and plays a significant part in preserving the world
carbon cycle and controlling the earth’s climate (Pan et
al., 2011). Therefore, accurate measurement of forest
biomass is crucial for maintaining the carbon accounting,
climate change mitigation plans, and for sustainable forest
management (Zhang et al., 2015).

Traditional approaches for estimating biomass
include destructive sampling and allometric equations,
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Abstract
________________________________________________________________________

Forest biomass and carbon estimates are the key inputs to the understanding of the global carbon
cycle and reliable and accurate estimates of tropical forest above ground biomass (AGB) are important
for terrestrial carbon accounting, and climate change modeling research. Traditional field-based
approaches have been considered the most accurate, but the processes are time consuming, costly
and, most importantly, it can only be done in small and accessible regions. Emergence of remote
sensing and GIS technique provides methods for reliable AGB estimates at large scales. SAR sensors
provide unique opportunities to characterize forest vegetation through its sensitiveness to vegetation
structure and all-weather imaging capability over regions of persistent cloud cover. SAR signal is
strongly correlated with the forest structure due to volumetric scattering with the tree canopies
depending on the operating frequencies. This study explores the potential of multi frequency SAR
data for forest biomass assessment in the state of Madhya Pradesh. We used the L-band data from
ALOS-2 PALSAR-2 and C-band data from EOS-04 and Sentinel-1. Field Inventory data from the
215 sample plots of 0.1ha size were used for field biomass estimation. The plot-level AGB estimates
were empirically modeled with the EOS-04, Sentinel-1, and ALOS PALSAR-2 backscatter information
in HH, HV polarization. Cross polarisation backscatter in L band shows better relation than the C
band due to saturation of C-band in higher biomass ranges. EOS-04, Sentinel-1 and ALOS-2 PALSAR-
2 based models predicts AGB with R2 of 0.37, 0.41 and 0.59, respectively. Synergistic utilization of
the C and L-band improve upon individual bands model and gives a correlation coefficient of 0.64.
Total biomass of the study area is estimated as 612.34 million tons with synergistic utilization of C
and L-band with an estimation error of 28.98.

Keywords: Above Ground Biomass, SAR, EOS-04, ALOS-2 PALSAR-2.
________________________________________________________________________
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among others. The field measurement has been proven to
give accurate estimate and a pre-requisite to generate any
biomass database but is destructive in approach, time
consuming and expensive (Gier et al., 2003, Kumar et
al., 2017). Remote sensing methods are non-destructive
and have many advantages, viz. synoptic view, large area
and multi-temporal coverage, etc. and greatly increase
efficiency (Patenaude et al., 2005; Balsamo et al., 2018;
Xiao et al., 2019), thereby overcoming some of the
challenges associated with field measurement. As a result,
remote sensing techniques have emerged as a viable
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option for precise and cost-effective biomass assessment
using optical and microwave remote sensing data (Nandy
et al., 2017; Muukkonen et al., 2007; Padalia et al., 2023;
Das et al., 2024). Remote sensing data are being integrated
with field data to generate precise and comprehensive
spatial estimations of forest biomass (Lu 2005; Fararoda
et al., 2021). However, the accuracy of such remote
sensing based method largely depend on the robustness
of the field inventory data and sampling design
(Rajashekar et al., 2017, Chave et al., 2014).

Optical RS is used to retrieve forest variables based
on reflectance from individual bands, band ratios and
normalized vegetation indices (Zhang et al., 2014).
Microwave signal interact with forest canopies, penetrate
deep into the canopies based on the operating wavelength
and returning backscatter signal is used to correlate with
forest biomass. Forest biomass is stored in multiple
canopy stories and passive optical sensors interact with
the top of the surface feature leaving understory vegetation
properties unaddressed (Joshi et al., 2016). Spectral
saturation of the optical sensors is also observed in the
high biomass region (Lu et al., 2005). The persistent cloud
conditions in tropical forests limits the standalone uses
of optical data and their applications often ends up in
unreliable AGB estimate and tends to underestimate in
high biomass regions. The Synthetic Aperture Radar
(SAR) systems operating in microwave region of the
electro-magnetic spectrum (EMS) have the advantage
over optical data sets as it can see through the clouds as
tropical forests are often cloud infested. SAR systems
are capable to penetrate through vegetation cover
depending on wavelength used, and collects structural
information of the vegetation that is more relevant to the
biomass (Huang et al., 2018).

So far X, C, L and P band SAR data have been
extensively used in retrieving forest parameters. Radar
scattering mechanism is controlled by the particle size
and radar wavelength. Short wavelengths are scattered
by smaller constituents of trees such as leaves and
branches, whereas the longer wavelengths are scattered
by components such as trunks. This leads to saturation of
the smaller wavelength signals such as C and X-band at
relatively low-AGB forests, whereas the saturation of the
longer wavelength such as L and P-band are observed at
relatively higher AGB. For this reason, X and C-band
SAR were predominantly utilized for assessment of forest
canopy characterization (primary interaction with top
canopy layer due to less penetration capacity). Low
wavelength radar systems such as Sentinel and RadarSAT

and Terra-X SAR are mainly used to estimate the AGB
in low biomass regions (e.g., sparse savannas), shrublands,
grasslands, or agricultural crops (Das et al., 2024).L-band
and P-band SAR sensors are therefore preferred over
smaller wavelengths as longer wavelengths radar signal
can penetrate the tree canopy and interact with larger
woody components (stems and branches) of the forest
(Le Toan et al., 1992).

The open access availability of dual pol L-band
global mosaic from JAXA has provided opportunities for
large scale AGB mapping and several studies have noted
saturation of L-band datain high biomass regions. Bouvet
et al. (2018) used 2010 PALSAR-2 mosaics and observed
the saturation of the L-band data in regions with AGB
over 85 Mg/ha to estimate woody AGB in African
savannahs and woodlands using Bayesian methods and.
Hame et al. (2013)used L-band effectively in mapping
AGB in Laos with dense tropical forest. Shugart et al.
(2010) found L-band synthetic aperture radar data
saturated in the AGB range of 100–150 Mg ha-1. However,
upcoming P-band BIOMASS mission from ESA will be
capable of estimating AGB in high biomass regions more
effectively (Le Toan et al., 2011).

Earlier studies reported the uses of different SAR
sensors in reliably mapping forest AGB over Indian
forests. Thumaty et al. (2016)used L-band ALOS
PALSAR data to spatially estimate the forest biomass the
central Indian deciduous forest in the state of Madhya
Pradesh for the Year 2010. Study shows the HV
backscatter in L-band is strongly correlated with forest
biomass. Suresh et al. (2014) also used L-band SAR data
for forest type mapping and biomass estimation for the
state of Odisha. C and L-band data has been used in
isolation for AGB estimation over Indian forest (Padalia
et al., 2017; Thumaty et al., 2016; Suresh et al., 2014;
Das et al., 2024). However, synergistic utilization of C
and L-band for AGB estimation over Indian forests in
relatively less explored. Considering the availability of
the C and L-band data and their individual advantages, in
this study we explored the synergistic utilization of the C
and L-band data for AGB estimation in the low to medium
AGB forest of the Madhya Pradesh.

Materials and Methods

The Study Area

The study is carried out in the forest of the state of Madhya
Pradesh. Madhya Pradesh is the second largest state of
India having large diverse forest reserves with enormous
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Fig. 1: Study area (Madhya Pradesh) and field plots overlaid on forest cover
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biodiversity. It lies in between 74.03° east to 82.81° east
longitude and 26.86° north to 21.07° north latitudes. The
spatial extent of the state is 308,144 km2 of which 77,493
km2 (~25.14% of the TGA) is under forest cover. The
state of Madhya Pradesh has the largest forest cover
followed by Arunachal Pradesh and contributes 10.85%

of the forest area of the country. The major forest types
present in the state are Tropical Moist, Tropical Dry,
Tropical Thorn and Subtropical broad leaved hill forest.
Figure 1 shows the study area and distribution of the field
plots.

Field Inventory

Ground inventory data from 215 plots of 0.1ha size were
used for biomass estimation. Field measured variables
such as diameter, tree height, and species scientific name
were recorded for all trees with DBH> 10 cm during field
inventory during 2018-19. Field Inventory data were
collected as part of the National Field Inventory carried
out under the National Carbon Project, Vegetation Carbon
Pool Project phase-II during 2018-2019 (ISRO-Geosphere
Biosphere Programme). Field measured variable such as
diameter and species information were used to estimate
the tree volume using species specific volumetric
equations developed by Survey of India (FSI, 1996).
Further, stem volume was converted to total tree biomass
using wood ded biomass expansion factors.

AGB = Volume × WD × BEF 
                         (Brown and Lugo 1992)                 (1)

Where, volume is estimated through volumetric
equations developed by FSI, WD is wood density and
BEF is biomass expansion factor.

Species specific volume equations were used for
volume equation database created by FSI (FSI, 1996),
wood density data were used from Indian Woods database
(FRI, 1996) and Biomass expansion factors were derived
from Kaul et al. (2011). Plot AGB was obtained as sum
of the all trees sampled within the 0.1ha size of the plot.
Field measured biomass from these 215 sample field plots
were correlated with HH and HV backscatter. Field
measured biomass was regressed against HH and HV
backscatter of C- and L-band SAR data.

SAR Data Processing

SAR data in the C and L-band were used for the AGB
estimation. C-band data were used from the EOS-04 and
Sentinel-1, while L-band data were sued from the ALOS-
2 PALSAR-2 sensor. Level 2 orthorectified and
radiometrically terrain-corrected ALOS-2 PALSAR-2
data were obtained from Google Earth Engine.
Additionally, the Level 2 enhanced georeferenced product
of EOS-04 was acquired through the Bhoonidhi web
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portal (https://bhoonidhi.nrsc.gov.in), of National Remote
Sensing Centre (NRSC), ISRO. EOS-04 is a follow-on
mission to the earlier RISAT-1 mission with similar
specifications that was operated during April 2012–
September 2016 (Misra et al., 2013).SAR data were
calibrated and processed for speckle filtering. The
downloaded SAR data were converted to backscatter
using the following calibration equations (equation 2 &
3 for EOS-04 and ALOS-1PALSAR-2, respectively):

σ° = 10log10(DN2) + 10log10൫sin ip൯ − KdB

                                 (SAC, 2023)                             (2)
Where, Sigma-Naught (dB), DN, i

p
and K

dB

arebackscattering coefficient, digital number, per pixel
incidence angle and calibration constant, respectively.

σ° = 10log10(DN2) − 83                                    (3)
Where, Sigma-Naught (dB) is the radar backscatter

coefficient in dB, DN is a digital number of the input
image, and “83 is the calibration constant (Motohka et
al., 2018).

Level 1 Ground Range Detected (GRD) products
of Sentinel-1A with two polarization images (VV and
VH), were downloaded for the December of 2019 to
match the time of field inventory. Sentinel Application
Platform (SNAP toolbox) was used to process the
Sentinel-1A GRD data for sigma naught.

AGB Modelling

Plot level AGB measured through field inventory were
correlated with cross and co-polarized backscatter values

from different sensors. Single and multiple non-linear
regression models were considered for the AGB modeling.
Total of 215 field plots were correlated with C-band data
from EOS-04 and Sintinel-1 and L band data from the
ALOS-2 PALSAR-2. Methodology flowchart is shown
in the Fig. 2. The cross-polarization (HV & VH) data are
more sensitive to the canopy structure and less susceptible
to noise and interference (Sinha et al., 2020; Tian et
al., 2023). Correlation between field measured biomass
and different combination SAR sensors such as: (1) EOS-
04 data (C-band) alone (2) Sentinel-1 data (C-band) alone
(3) ALOS-2 PALSAR-2 data (L-band) alone (4)
combination of ALOS-2 PALSAR-2 and EOS-04 and (5)
combination of ALOS-2 PALSAR-2 and Sentinel-1, were
explored for AGB modeling.

The model performance was assessed using the root
mean squared error (RMSE) and the coefficient of
determination (R2). The model with the high R2 value and
the low RMSE was finally chosen for the spatial AGB
mapping. Root mean square error (RMSE) was calculated
by using field measured and modeled AGB as follows:

RMSE = ඩ(

𝑁

𝑛=1

AGBmodelled (i) – AGBmeasured (i))2/ N   (4)

Where, N is the number of sample plots, AGB
modelled (i)

is the modelled AGB and AGB
measured(i)

 is the field
measured biomass.

Fig. 2: Methodology Flowchart

Indian Cartographer, Vol. 44, No. 1 & 2
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Table 1: Model parameters R2, RMSE, model form and the model estimated AGB

Best performing model using Sentinel-1 and ALOS-2 PALSAR-2 was finally used for AGB mapping..

Results

SAR images from the different sensors were radiometric
calibrated and speckle filtered before generating the state
level mosaic. Field measured biomass in the study area
varies upto 262 Mg ha-1 with a mean AGB density of
83.61 Mg ha-1 with majority of the field plots falling below
the saturation range of the L-band data. Since the study
area falls in the low to medium biomass range, 85 % of
the total plots have the biomass below the 150 Mg ha-1

while remaining 15 % plots have the biomass above 150
Mg ha-1.

Non linear regression and multiple non-linear
regression models were trained on field plots with C- &
L-band and their combination. Cross-polarized
backscatter was found to be strongly correlated with field
biomass as compared to co-polarized backscatter at both
the frequencies. EOS-04 HV backscatter gives a R2 of
0.37 against the R2 of 0.41 with the Sentinel-1 VH
backscatter. ALOS-2 PALSAR-2 HV backscatter gives
better R2 of 0.59 with a RMSE of 33.7 Mg ha-1. Better
correlation with L-band is attributed to the deeper

penetration into the forest canopies as compared to C-
band. C-band found to be saturate faster under the forest
canopies in the medium-high biomass ranges. Combined
utilization of the C and L-band improved upon the
individual bands in term of R2 and RMSE. C-band data
better discriminate in the low biomass regions while L-
band data gives better description of the medium-high
biomass region leading to better forest AGB estimation
by combining C- and L-band data.

Multiple non-linear model using Sentinel-1 and L-
band data predicts AGB with RMSE of 28.98 Mg ha-1

and R2 of 0.64 while EOS-04 and L-band gives RMSE
and R2 of 30.17 and 0.61, respectively. Table 1 shows the
comparison of different AGB models and their estimated
AGB values. Finally the best model in terms of RMSE
and R2 is sued for spatial biomass mapping for the state
of Madhya Pradesh and estimated the total AGB in the
state as 612.35 million tons. Fig. 2 shows the correlation
between the field measured AGB values and the combined
backscatter values in the cross polarization from the
ALOS-2 PALSAR-2 and Sentinel-1 data.

Forest Biomass Estimation using Multi Frequency SAR Data

Data Used R2 RMSE 
(Mg ha-1) AGB Model Estimated AGB 

(Millions Tons) 

C-Band (Sentinel-1) 0.41 74.01 𝐴𝐺𝐵 =  𝐸𝑋𝑃(𝜎𝑠1𝑉𝐻 ∗ 0.3027 + 9.4463) 617.03 

L-Band 
(ALOS-2 PALSAR-2) 0.59 33.70 𝐴𝐺𝐵 =  𝐸𝑋𝑃(𝜎𝑎𝑙𝑜𝑠𝐻𝑉 ∗ 0.2114 + 97.3124) 585.47 

 

C-Band 
(Risat-1a) 0.37 72.49 𝐴𝐺𝐵 =  𝐸𝑋𝑃(𝜎𝑒𝑜𝑠 04𝐻𝑉 ∗ 0.2828 + 8.581) 579.29 

 

Sentinel-1 & 
ALOS-2 PALSAR-2 0.64 28.98 𝐴𝐺𝐵 =  𝐸𝑋𝑃((𝜎𝑠1𝑉𝐻 + 𝜎𝑎𝑙𝑜𝑠𝐻𝑉 ) ∗ 0.1534 + 9.1254) 612.34 

 

Risat-1A & 
ALOS-2 PALSAR-2 0.61 30.17 𝐴𝐺𝐵 =  𝐸𝑋𝑃((𝜎𝑠1𝐻𝑉 + 𝜎𝑎𝑙𝑜𝑠𝐻𝑉 ) ∗ 0.1496 + 8.7303) 592.59 
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Fig. 4: Map showing the spatial distribution of the above ground biomass

Fig. 4 shows the map of spatial distribution of the
 AGB in the forest of the Madhya Pradesh. Nearly 82 %
of the area is mapped in the biomass below 150 Mg ha-1

while 18 % area is mapped with AGB>150 Mg ha-1. Larger
area with AGB<150 Mg ha-1 is also attributed to the SAR
signal saturation beyond the AGB>150 Mg ha-1 leading
to higher biomass regions getting mapped into AGB <

150 Mg ha-1. Most of the high biomass regions are found
the in the south-eastern part while north western par is
covered in the low biomass range. Northern region of the
state is dominated by the Open dry deciduous forest and
host most of the low biomass forests. Moist deciduous
forest in the south-eastern region hosts most of the high
biomass forests of the state.

Indian Cartographer, Vol. 44, No. 1 & 2

Fig. 3: Scatterplot showing the relation between SENTINEL-1 & ALOS-2 PALSAR-2 backscatter & Biomass
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Fig. 5: Validation of measured AGB with model estimated AGB
over different vegetation types

Discussion

Backscatter from HV polarization is found to be more
effective in characterizing forest biomass compared to
other polarizations (Dobson et al. 1992) due to its better
dynamic range of backscatter values over forest regionsas
compared to other polarizations obtained in C-, L- and P-
bands (Le Toan et al. 1992). Cross polarization backscatter
is strongly correlated with biomass density due to
volumetric scattering mechanism with tree canopies
which is less prominent in the co-polarized data.

C-band operates in the small wavelength and
interacts mostly with the leaves and small branches of
the top canopies.  C-band backscatter values saturates in
the range of 70-80 tons as C-band data cannot penetrate
deeper into the dense canopies. The linear regression
model between AGB and cross-polarized backscatter has
a R2 value as 0.37 and 0.40 for EOS-04 and Sentinel-1
respectively. L-band is more sensitive to biomass as the
penetration power of L-band is more than the C-band,
and predicts the AGB with R2 and RMSE of 0.59 and
33.70 Mg ha-1, respectively. This shows that with the help
of L-band the biomass can be estimated more accurately
compared to the C-band.

In this study, field Inventory data was collected
during the 2018-19. Sentinel-1 and ALOS-2 PALSAR-2
data were used for the year 2019 while EOS-04 data was
used from the year 2022. Temporal mismatch between
the field measurement and Satellite data acquisition could
be the reason for relatively poor correlation with the EOS-
04 data as compared to the Sentinel-1 as both are operating
at the similar frequencies. Concurrent use of the field
inventory and EOS-04 data in the future will improve the
estimation accuracy.

C- Band remains more sensitive to low biomass
reason due to its interaction with the leave and small
branches in the top canopies while L-band interact mostly
with the branches and the stem. It has been reported in
the literature that combination of the C- & L-band can
improves the AGB estimation in the low-medium biomass
range (Cartus et al., 2017; Musthafa & Singh, 2022) by
utilizing their individual strengths. We use multiple
regressions using C and L-band cross-polarization
backscatter to predict the AGB. Combined utilization of
C- and L-band improves the model accuracy upon
individual bands and gives R2 and RMSE of 0.61 and
30.17 Mg ha-1 for the combination of ALOS-2 PALSAR-

2 and EOS-04 while R2 and RMSE of
0.64 and 28.98 Mg ha -1 for the
combination of ALOS-2 PALSAR-2
and Sentinel-1. Inclusion of C band data
from the EOS-04 and Sentinel-1 along
with the L-band data improves the
model accuracy especially in the low
biomass regions.

Fig. 5 shows the comparison of
the field measured and model estimated
AGB values at plot level. It is observed
that the Model based on the C and L-
band saturates in AGB>150 Mg ha-1 and
gives poor AGB estimation in these
areas. Model predicts lower AGB
values in the all plots with AGB>150
Mg ha-1. Comparison of field measured
AGB over sample plots shows that 190
plots have AGB<150 Mg ha-1 while 25
plots are with AGB>150 Mg ha-1. On
the other hand, AGB model predicts the
AGB<150 Mg ha-1 in the 211 plot while
estimating AGB>150 Mg ha-1 in the
only 4 plots (As shown in the Fig. 6).

Forest Biomass Estimation using Multi Frequency SAR Data
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Fig. 6: Distribution of the measured and model estimated AGB at the sample plots.
Figure shows that some of the plot in very low and very high biomass range are mapped into the medium

biomass range showing underestimation in the high and over-estimation in the low biomass regions

Class Biomass Range Area Contribution (%) AGB contribution (%) 
1 0-50 30.05 11.48 
2 50-100 40.76 37.95 
3 100-150 21.60 32.40 
4 150-200 5.47 11.52 
5 above 200 2.12 6.65 

This shows the clear saturation of the model in AGB>150
Mg ha-1. Field measurements of the biomass shows 75
plot with AGB<50 Mg ha-1 whereas model estimated AGB
shows 56 plots with AGB<50 Mg ha -1 indicating
significant overestimation over-estimation in the lower
biomass regions.

Past studies have reportedthe similar saturation of
the radar backscatter in high biomass regions depending
on the wavelength used, resulting in a logarithmic or
sigmoidal relationship of AGB with backscatter (Saatchi
et al., 2011, Le Toan et al., 2011). C–band data founds to

saturate beyond 70 Mg ha”1. Analysis on the airborne
AIRSAR and E-SAR data reveals that SAR signal
saturation for L-band (15–30 cm wavelength) may vary
between 80 and 150 Mg ha”1while for P-bands, at ~70 cm
wavelength it is observed in the range of 200–350 Mg
ha”1 (Le Toan et al., 2011, Mitchard et al., 2009, Bouvet
et al., 2018, Mermoz et al., 2015; Fararoda et al., 2021).
Mitchard et al. (2009) found co-polarized L-band data
useful to map AGB upto 150 Mg ha-1across several sites
of woody vegetation.

The study area is mainly covered by tropical moist
and dry deciduous forests, followed by Teak
(Tectonagrandis), mixed deciduous forests and Sal
(Shorearobusta) forests (Thumaty et al., 2016).  Spatial
analysis of the model predicted AGB shows large
difference in the predicted AGB over different forest
regions. High-biomass regions are mapped in the central
and south-eastern region while the northern region in
dominated by the low biomass region. Low biomass
northern and western part of the forests are dominated

by open dry deciduous forest while dense sal forest in
the south-eastern region host the highest biomass density
in the state. Nearly 30 % of the area of the state with
AGB < 50 Mg ha-1 contributes only 11.5 % to the states
total AGB due to its low biomass density while only 7.5
% area with AGB > 150 Mg ha-1 contributes 18% to the
states total AGB. 62 % forest area of the state falls in the
medium biomass range of 50-150 Mg ha-1. AGB range-
wise comparison of area and their AGB contribution is
given in the Table 2.

Table 2: AGB range wise distribution of the forest area and their contribution of the total AGB of the state

Indian Cartographer, Vol. 44, No. 1 & 2
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Conclusion

The study suggests that SAR data is suitable for estimating
AGB in low to medium biomass forests up to the AGB of
150 Mg ha-1. We explored the utilization of backscatter
from C and L-band to enhance the AGB estimation in the
low- medium AGB regions. Empirical models shows that
C- and L-band based model gives of R2 for 0.37, 0.41,
and 0.59 for EOS-04, Sentinel-1 and ALOS-2 PALSAR-
2, respectively. The results indicated that the combined
use of C- and L-band data out-performed the models
relying solely on either data source. The integrated model
using ALOS-2 PALSAR-2 and Sentinel-1 predicts AGB
with a RMSE of 28.98 Mg ha-1 and R2 of 0.64. The present
study highlights the potential of synergestic utilization

of multi-frequency SAR data for enhanced AGB
estimation at large spatial scale. C-band data alone give
poor AGB estimates due to its saturation in high biomass
regions, but significantly enhance the AGB estimation
when used in conjunction with L-band data. Relatively
poor correlation with EOS-04 data as compared to the
Sentinel-1 is due to the temporal difference in the field
data collection and the date of SAR data acquisition which
can be minimized in the future studies. Methods presented
here and the findings of the study are significant
contribution in the context of the upcoming NISAR
mission which will provide S and L-band. Further, the
anticipated availability of SAR data in the P-band from
the BIOMASS mission along with NISAR will enhance
the SAR data utilization in the high biomass regions.
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Introduction

The most vital natural resource for existence is water.
Due to extended dry seasons, worldwide environmental
changes, and population development, water resources
are under severe strain. Judicious usage of water resources
needs spatio-temporal estimation of the volume and
quality of the water (Shrestha & Jayaraj, 2018).
Negligence and a lack of understanding of current water
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Abstract

Spatio-temporal estimation of volume and quality of the water resources in semi-arid environments
is the need of the moment. The most extensively used methodology for fast and precise estimation of
surface runoff from an un-gauged catchment is the Curve Number (CN) technique. Coupling the CN
method along with the geospatial technique is an efficient way of runoff estimation. Hence, the
current study emphasizes on a grid-wise estimation of the daily runoff for un-gauged Sarasvati River
catchment using the CN technique modified for Indian conditions utilising variables generated by
remote sensing and other supplementary data. Satellite data, Cartosat DEM, land use/land cover
(LULC), soil texture, gridded rainfall and other supplementary data were used for estimation of the
daily surface runoff for 15 years (2002-2016). A program was developed in Interactive Data Language
(IDL) for estimating runoff as a multiband raster. The mean yearly rainfall and runoff of the catchment
were estimated at 732.07 mm and 176.25 mm respectively for the period 2002-2016 with a runoff
coefficient of 0.24. The analysis supports Haryana Sarasvati Heritage Development Board (HSHDB)
in the planning and development of the Sarasvati rejuvenation project. The precise delineation of the
drainage network, catchment and watershed boundary in relatively flat terrain, use of large-scale
geospatial inputs, fully distributed CN approach and development of the IDL program are the main
research contributions of this study. The work carried out is only research presently available for the
Sarasvati river catchment that provides spatial and temporal runoff potential. The current study
emphasizes the application of digital cartography and geospatial technologies to sustainable
ecosystems and water resource management in the Sarasvati river catchment.

Keywords: CN; runoff; hydrological soil group; Sarasvati river catchment; HSHDB.

resources, as well as varying climatic circumstances, have
resulted in inequality in water demand and supply. The
issue is particularly acute in semi-arid zones, in which
water resources are very scarce. The water cycle is
incomplete without a surface runoff. It is a vital parameter
for determining a watershed’s water production potential,
planning conservation measures, and lowering soil
erosion and inundating risks downstream. In the subject
of water resources engineering, the rainfall-runoff event
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is widely acknowledged as amongst the most complicated
and irregular real-world events. The necessity to assess
water resource availability in the ungauged watershed/
catchment is a common subject of discussion. The use of
physically-based hydrological models to assess the
influence of climatic changes, LULC changes, and water
usage on water resources, has been a focus of water
resources development operations. In spite of the fact that
several hydrological models for estimating runoff from
event rainfall are available, the majority of them require
vast input data, extensive calibration, and have location-
specific applicability (Garg et al., 2013). In runoff
modelling, the spatio-temporal variation of hydrological
factors responsible for runoff estimation is crucial. The
evaluation of land surface attributes at spatio-temporal
scales using geospatial technology, and advanced
computer skills are exceptionally valuable input
information for hydrological modeling. Remote sensing
technology is an excellent fit to optimize the usage of
existing spatial data.

The Natural Resources Conservation Service Curve
Number (NRCS-CN) method developed by the United
States Department of Agriculture (USDA) is widely
applied for the generation of surface runoff because of
its flexibility and simplicity (Nagarajan & Poongothai,
2012). It is also called simply the CN approach. It is the
most versatile and commonly adopted technique for
estimating runoff quickly. It is also reasonably simple to
use with little data and produces appropriate results. This
technique integrates the watershed characteristics and
climatic conditions into one parameter named as CN. The
NRCS-CN method for generating surface runoff is widely
acknowledged by experts, foresters, hydrologists, water
resource developers, and engineers (Pandey & Stuti,
2017). Many researchers applied the CN approach for
the generation of surface runoff from ungauged
watersheds in India (Rao et al., 2010; Nagarajan &
Poongothai, 2012; Pandey & Stuti, 2017; Rawat & Singh,
2017; Satheeshkumar et al., 2017; Shrestha & Jayaraj,
2018).

All the above investigations carried out for
estimation of runoff at the watershed’s outlet using the
NRCS-CN technique used lumped or semi-distributed
parameter approach. In this approach, they have calculated
composite CN or weighted-CN for the entire catchment
or watershed. In its initial phases of development, this
averaging method was more popular due to the ease of
manual computations. Given the existence of high-speed
computers, the classic composite technique is still used

to estimate runoff. However, Jena et al. (2012) found
considerable deviations in runoff calculations utilizing
single composite CN values rather than utilizing the
distributed-CN approach. This could be owing to the
NRCS-CN formula’s nonlinear nature. Lantz & Hawkins
(2002) have also noted the potential errors when a single
composite CN is used. Mishra & Singh (2003) have also
shown that when there is a large variation of CN in a
watershed, runoff calculated using a lumped or semi-
distributed technique will deviate significantly. The
widespread accessibility of spatial data and usage of GIS
favor the practice of a spatially distributed CN approach
to runoff assessment currently. Also, a fully distributed
modeling approach is more rational and it has certain
advantages. First, it enables to divide any significant
catchment into several grids and accordingly runoff can
be generated over each grid. Runoff can be routed from
each grid to the outlet of the whole basin for calibration
and validation. However, there are just a few physically-
based fully distributed hydrological models available
which are suited for both study and real-world
applications. In addition, these modelling methods need
a large amount of input data, are complex, and require
observed runoff data for calibration and validation. As
the present study area is an ungauged catchment, the
NRCS-CN method with the fully distributed approach is
adopted for the estimation of the surface runoff.

HSHDB is working on the Rejuvenation of
Sarasvati river. HSHDB has planned a dam at Adi Badri
and a barrage near Rampur Gainda village on the Somb
river (the Yamuna river’s tributary) in the Yamunanagar
district of Haryana to supplement the water in the
Sarasvati river (Figure 1). Water from the dam and barrage
will be diverted to the Sarasvati creek (originating point
of present Sarasvati river near Rampur Harian village).
Adi Badri is a forest region and archaeological place
located in the Bhabar area of the Yamunanagar district,
in the foothills of the Shivalik Hills. The Sarasvati river
begins close to Rampur Harian village situated at 9 km
southward direction of Adi Badri and flows southwest
from there. The River Somb begins from the more
northern direction in the upper portion of the Siwalik
Hills. It flows east of the Sarasvati river in a north-south
direction before joining the Yamuna river in the southeast.
The Somb River passing through this area is considered
as the originating point of the Vedic river Sarasvati (the
point where the river leaves the mountains and enters plain
land) (Bhadra et al., 2009). The Vedic Sarasvati was a
massive and blessed river in northwest India that flowed
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from the Har-ki-Doon glacier in the Garhwal Himalayas
to the Gulf of Cambay on the Gujarat coast and vanished
approximately 3000 B.C (Bhadra et al., 2009). Several
fragments of this river exist as palaeo channels (Gupta,
1996; Valdiya, 2002).

Fig. 1: Location of the proposed dam, barrage and balancing
reservoir

HSHDB needs to assess the current water yield
potential of the Sarasvati river catchment as it will support
in planning and development of the Sarasvati

Rejuvenation project. Therefore, HSHDB requested and
funded for taking up the current study. Therefore, the
current study focuses on grid-wise estimation of the daily
runoff for ungauged Sarasvati river catchment using the
NRCS-CN method modified for Indian conditions
utilising variables generated by remote sensing and other
supplementary data.

Study Area

The current study is carried out in the Sarasvati river
catchment (delineated by considering the outlet point as
the confluence with River Ghaggar) mostly in Haryana
and some parts of Punjab (Fig. 2). It lies partly in Ambala,
Kaithal, Karnal, Kurukshetra and Yamunanagar districts
of Haryana and Patiala district of Punjab. The Sarasvati
river started its course close to Rampur Harian village, in
the southward direction of Adi Badri, and flowed over
the places like Bilaspur, Mustafabad, Thanesar, Bibipur,
and Pehowa in Haryana before joining the Ghaggar river
close to Rasauli village in Punjab. Sarasvati river is
currently in an obsolete state, largely seasonal and with
intermittent discharge. The study area is estimated at 2140
km2 and is bounded by latitude 29º 52/ 0.37// N to 30º 24/

23.16// N and longitude 76º 10/ 10.27//E to 77º20/39.27// E.

Fig. 2: Study area location: Sarasvati river catchment
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Database Used

Different input data used in the study are presented in
Table 1. The elevation in the study area varies from 182m
to 296 m. Agricultural land covers 90.33% of the study
area (Fig. 3). The remaining part is covered by built-up
land (5.91%), forest land (2.47%), and a very small area
by other categories (water bodies, wastelands, grass/
grazing land and wetlands). In the case of soil, 62.65%

of the total geographical area is represented by clay loam
soils (Fig. 4). The remaining part is covered by sandy
loam (18.68%), loam (6.72%), silt loam (5.14%) soils,
and a very small area by loamy sand, sandy clay loam,
silty clay loam and silty clay soils. Non-soil categories
like built-up land and water bodies occupy a 5.68% and
0.65% area respectively. The study area’s average annual
precipitation for the period 2002-2016 varies from 490
to 1444 mm (Fig. 5).

Data Description Source Reference 
Satellite data IRS Resorcesat-2 LISS-IV- 

February and March 2018 
NRSC, ISRO, Hyderabad -- 

DEM Cartosat 30 m NRSC, ISRO, Hyderabad NRSC, 2014 
LULC 1:50000 scale (2015-16) NRSC, ISRO, Hyderabad NRSC, 2011 
Soil texture 1:50000 scale SAC, ISRO, Ahmadabad Dasgupta et al., 2000 
Rainfall 0.25°×0.25° daily gridded 

(2002-2016) 
IMD, Pune Pai et al., 2014 

Crop production  Season-wise data for 
different districts  

Government of India -- 

SOI toposheets 1:50000 scale SOI -- 
Existing maps Sarasvati River HSHDB, Panchkula -- 

Table 1: Input data used in the study

Fig. 3: LULC (1:50000 scale) of Sarasvati river catchment

Indian Cartographer, Vol. 44, No. 1 & 2
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Methodology

Methodology flow chart for the study is presented in Fig.
6. Flow direction, flow accumulation and the slope have
been prepared using DEM. As the study area is relatively

flat terrain, the watershed delineator module in the Soil
and Water Assessment Tool (SWAT) (Neitsch et al., 2011)
were used for the delineation of catchment and watershed
boundary. The drainage network was delineated by visual
interpretation of satellite data and taking reference from

Fig. 4: Soil texture (1:50000 scale) of Sarasvati river catchment

Fig. 5: Average annual rainfall (2002-2016) of Sarasvati river catchment

Spatially Distributed CN Technique and Earth Observation Data
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the SOI toposheet. The Sarasvati river catchment and
watershed boundaries were then delineated by burning
the drainage network over the DEM. A hybrid drainage
network (satellite-derived drainage + potential drainage)
has also been prepared for the study area. Hydrological
Soil Group (HSG) was assigned based on Soil texture
data. Grid-wise runoff CN (30m×30m) was prepared by
integrating LULC and HSG for Antecedent Moisture
Condition-II (AMC-II). Slope-adjusted CN for AMC-II
was prepared using slope and CN for AMC-II. Later,
slope-adjusted CN for AMC-II was converted to courser
grid size (990m×990m) by averaging the CN values within
each grid. The grid size 990m×990m was chosen for final
output as it is computationally efficient and also available
rainfall data is at much courser resolution (0.25°×0.25° -

approx. 27 km). Slope-adjusted CN corresponding to
AMC-I and AMC-II were prepared using slope-adjusted
CN corresponding to AMC-II. AMC for each day
(0.25°×0.25°) for 15 years (2002-2016) has been
identified using previous 5-day antecedent rainfall.
Potential maximum retention (S) has been estimated for
each day (990m×990m) for 15 years (2002-2016) using
CN of identified AMC condition. Finally, daily runoff
depths for a grid size of 990m×990m approximately
1Km×1Km for 15 years (2002-2016) were estimated
using the CN method and rainfall data. A program was
developed in IDL for grid-wise daily runoff estimation
using the NRCS-CN method. Daily runoff was obtained
in the form of a multiband raster. The detailed
methodology is described as follows:

Fig. 6: Methodology flowchart

NRCS-CN Method

USDA NRCS established a technique to estimate the
amount of direct runoff from rainfall in 1954 (Rallison,
1980). It is called the CN approach, and it was established
empirically for small agricultural watersheds (USDA,
1972). In the present study, runoff is estimated using the
NRCS CN technique as follows:

𝑄 =
(𝑃 − 0.3𝑆)2

(𝑃 + 0.7𝑆)
                                             (1)

Where Q = Runoff depth (mm); P= Rainfall depth
(mm) and S = Potential maximum retention (mm).

Narayana (1993) modified the original NRCS CN
approach by conducting multiple experiments in India to
develop equation (1) for Indian conditions. In India,
equation (1) was also used by Rao et al. (2010) and
Satheesh kumar et al. (2017) to estimate the runoff. If P >

, equation (1) holds; else, Q = 0. The S value in

equation (1) is estimated as follows:

𝑆 = ൬
25400

𝐶𝑁
൰ − 254                                       (2)

Where CN is known as the curve number, which
varies from 0 (lowest runoff) to 100 (highest runoff).
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Determination of AMC

AMC is an indication of watershed moistness which
represents the quantity of water in the soil profile at any
particular time. Based on soil properties and rainfall limits
for rainy and non-rainy seasons, NRCS defined three
antecedent soil-moisture conditions and named them I,

II, and III. CN also varies with one of the three AMCs.
The AMC is assigned based on the cumulative rainfall
during the previous five days. Daily gridded AMC for 15
years (2002-2016) were determined using daily gridded
rainfall data as given in Table 2 (Chow, 1988). The rainy
season in the study area is considered from June to
October.

Preparation of Runoff CN

Grid-wise CN (30m×30m) was prepared by overlaying
LULC and HSG for AMC-II (CN2) in a GIS environment.
CN was designated to each combination of LULC and
HSG based on works of literature (USDA, 1986; Tripathi,
1999; Rao et al., 2010; Sunder Kumar et al., 2010;
Pancholi et al., 2015; Tailor & Shrimali 2016; Patel et
al., 2017; Satheeshkumar et al., 2017; Kuanar & Nath,
2018 etc.). Season-wise crop production data for different
districts were used to identify the dominant crops grown
in Kharif and Rabi seasons. Rice and wheat were found
to be the dominant crops in the Kharif and Rabi seasons,
respectively, while sugarcane was the dominant annual
crop. CN values for agricultural land were given based
on identified crops.

HSG (Hydrologic Soil Group) Preparation

The rate of soil infiltration depends upon surface
conditions and subsurface permeability. Based on the
lowest infiltration rate measured for bare soil after
extended wetness, soils are classified into four HSGs (A,
B, C, and D). HSGs also show the transmission rate, or
how quickly water travels through the soil. HSG was
assigned based on soil texture data as given by USDA
(1986). HSG-D was assigned to non-soil categories like
water bodies and built-up areas (Rama Subramoniam et
al., 2014).

Estimation of Slope Adjusted Runoff CN

In determining the flow of water, the land slope parameter
is crucial. Previous research has demonstrated that when
the slope increases, the surface runoff increases due to a

AMC Soil characteristics 
5-day antecedent precipitation (mm) 

For non- rainy-season For rainy-season 
I Dry < 12.5 < 35 
II Normal or average 12.5 – 27.5 35 – 52.5 
III Wet >27.5 >52.5 

Table 2: Classification of AMC

reduction in initial abstraction, infiltration, and the
recession time of overland flow (Chaplot & Bissonnais,
2003). The traditional NRCS-CN method is developed
for field-scale with the assumption that the field will have
a constant slope of around 5%. However, to account for
the slope’s spatial variance, the specified CN

2
 values must

be slope corrected. As a result, Sharpley & Williams
(1990) provided the following equation for the calculation
of slope adjusted CN

2
 called CN

2α
:

𝐶𝑁2∝ =
1

3
(𝐶𝑁3 − 𝐶𝑁2)(1 − 2𝑒−13.86∝) + 𝐶𝑁2     (3)

Where α = Slope in (m/m). As, this procedure has
not been thoroughly tested for ground conditions, Huang
et al. (2006) took a more straightforward method and
provided the following equation for CN

2α
:

𝐶𝑁2∝ = 𝐶𝑁2 
322.79 + (15.63 ×∝)

∝ +323.52
൨             (4)

In the present study, equation (4) is used for the
calculation of slope-adjusted CN

2.
 Slope adjusted CN

1

and CN
3
 are calculated as per Sobhani (1975) and

Hawkins et al. (1985) respectively as follows:

𝐶𝑁1∝ =
𝐶𝑁2∝

2.334 − (0.01334 × 𝐶𝑁2∝)
              (5)

𝐶𝑁3∝ =
𝐶𝑁2∝

0.427 + (0.00573 × 𝐶𝑁2∝)
               (6)

Results and Discussions

Drainage Network and Watersheds

A drainage network and watersheds of the Sarasvati river
catchment are given in Fig. 7. Chautang, Rakhsi, Bentan
and Para are tributaries of Sarasvati river. The watershed
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boundary is essential for determining which areas
contribute to runoff, silt, and pollution. The Sarasvati river

catchment has been divided into eight watersheds, each
covering 195km2 to 331 km2.

Fig. 7: Drainage network and watersheds of Sarasvati river catchment

Fig. 8: (a) HSG of Sarasvati river catchment; (b) CN2α of Sarasvati river catchment;
(c) CN1α of Sarasvati river catchment; (d) CN3α of Sarasvati river catchment

HSG and Slope Adjusted CN

HSG and slope adjusted CN of Sarasvati river catchment
is given in Fig. 8. It has been observed that soils containing

HSG-D cover the majority of the overall geographical
area (69.18 %). This is because of the clay loam soil
texture in these areas. The rest of the area was covered
by HSG-A (18.70%), HSG-B (11.85%) and HSG-C
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(0.27%). The slope of the catchment was ranging from 0-
59%. It was observed that CN

2α
 was ranging from 25 to

100. 87-100 (65.88%) range of CN
2α

 covers the majority
of the whole geographical area mostly in the catchment’s
upper parts followed by 60-79 (16.46%), 79-87 (15.12%),

Fig. 9: Annual runoff from 2002 to 2016 in Sarasvati river catchment

25-36 (2.26%) and 36-60 (0.28%) in other parts. Similarly,
CN

1α
 was ranging from 13 to 100. Also, 74-91 (65.19%)

range of CN
1α 

covers the majority of the whole
geographical area mostly in the catchment’s upper parts
followed by 29-64 (16.86%), 64-74 (14.76%), 13-29
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(2.50%) and 91-100 (0.69%) in other parts. Similarly,
CN

3α
 was ranging from 45 to 100. Also, 94-100 (65.88%)

range of CN
3α 

covers the majority of the whole
geographical area mostly in the catchment’s upper parts
followed by 69-90 (16.85%), 90-94 (14.77%), 45-56
(2.26%) and 56-69 (0.24%) in other parts.

Spatial Variability of Runoff

Monthly and annual runoff depths were estimated by
aggregating daily runoff depths. The spatial variability
of annual runoff in the catchment for the period 2002-
2016 is presented in Fig. 9. The year 2010 recorded
maximum runoff varying from 0mm to 1322mm, and the
year 2009 recorded minimum runoff varying from 0mm
to 452mm. The spatial variability of average annual runoff
(2002-2016) in the catchment is presented in Fig. 10. The
catchment’s runoff varied from 0 to 603 mm. Higher
runoff (above 300 mm) was observed in the upper part
while lower runoff (below 100 mm) was observed in the
lower part of the catchment. This is because of higher
rainfall in the upper part and lower rainfall in the lower
part of the catchment. The upper part of the catchment
was having hydrological soil group “D” and higher values
of the CN for all the three antecedent moisture conditions

(AMC). This was another reason for having a higher runoff
in the upper part of the catchment.

Area Weighted Rainfall and Runoff of The Catchment

Grid-wise rainfall and runoff were averaged for the total
catchment by adopting the area-weighted average method.
Annual rainfall and runoff of the catchment for the years
2002-2016 are presented in Figure 11. It was observed
that the years 2006 and 2014 were recorded as minimum
annual rainfall and runoff as 483.16 mm (and 84.92 mm
runoff) and 509.84 mm (and 83.29 mm runoff)
respectively. Maximum annual rainfall was recorded in
the years 2008 (1040.92 mm) and 2007 (925.27 mm).
Maximum annual runoff was recorded in the years 2002
(249.82 mm) and 2005 (219.57 mm). The mean yearly
rainfall and runoff of the catchment were estimated at

732.07 mm and 176.25 mm respectively for the period
2002-2016 with a runoff coefficient of 0.24. The yearly
rainfall trend line is concave, indicating that rainfall
increased from 2002 to 2008, then declined till 2016 due
to the recent abnormal climatic changes. The annual
runoff trend line is also concave and follows a pattern
that is similar to that of yearly rainfall. Therefore, from
the trend line, it can be observed that rainfall and runoff
have decreased in recent years.

Validation of Outputs

To validate the NRCS-CN model outputs, observed runoff
data is required. Central Water Commission (CWC), New
Delhi has its hydro observation sites which measure the
river discharge at various locations in India
(www.indiawris.gov.in). But there is no hydro observation
site available in the study area or nearby study area.
Therefore, to validate the NRCS-CN model outputs,
monthly rainfall data for 15 years (2002-2016) was used.
By comparing anticipated monthly runoff with monthly
rainfall peaks, the applicability and validity of the NRCS-
CN model were evaluated. A similar approach was also
adopted by Rawat & Singh (2017). The series of monthly
rainfall and runoff (2002-2016) in the catchment is
presented in Fig. 12. Even though the model may have
certain uncertainty owing to the absence of actual runoff,
the anticipated runoff and rainfall peaks matched quite
well. Results were further validated by correlation
analysis of monthly rainfall and runoff (Fig. 13). A similar
approach was also adopted by Rawat & Singh (2017) and
Satheesh kumar et al. (2017). It can be observed that, at a
99% confidence interval (p<0.01), there is a significant
positive correlation between monthly rainfall and runoff,
with a higher correlation coefficient (r=0.93). A
relationship between monthly rainfall and runoff was also
developed by fitting a linear regression by considering
runoff as the dependent variable and rainfall as an
independent variable. It was observed that there exists a
good linear association between monthly rainfall and
runoff having a high coefficient of determination
(R2=0.87).
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Fig. 10: Average annual runoff (2002-2016) of Sarasvati river catchment

Fig. 11: Annual rainfall and runoff time series of the catchment from 2002-2016

Fig. 12: The series of monthly rainfall and runoff (2002-2016) in the catchment
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Conclusion

This study demonstrates grid-wise estimation of the runoff
for un-gauged Sarasvati river catchment using the NRCS-
CN technique modified for Indian conditions utilising
variables generated by remote sensing and other
supplementary data. The CN which is the most important
model parameter has been specified scientifically using
available works of literature and season-wise crop
production data for different districts. Comparison/
validation of estimated runoff with observed runoff was
not attainable in the ungauged Sarasvati river catchment.
However, a large-scale geospatial database (1:50000
scale) and other supplementary data made it possible to
scientifically estimate grid-wise daily runoff in the
catchment. The NRCS-CN technique was shown to be
more efficient for estimating runoff since it takes less
time and can handle a larger data set. For tiny catchments
or watersheds, traditional hydrological data are generally
unavailable for taking developmental activities. In such

circumstances, remote sensing-derived variables, as well
as other supplementary data, might be used to improve
runoff estimation approaches. The analysis gives a
reasonable estimate of the catchment’s current runoff
potential and it will support HSHDB in the planning and
development of the Sarasvati rejuvenation project. Precise
delineation of the drainage network, catchment and
watershed boundary in relatively flat terrain, use of large-
scale geospatial inputs, fully distributed CN approach and
development of the IDL program are the main research
contributions of this study. The work carried out is only
research presently available for the Sarasvati River
catchment that provides spatial and temporal runoff
potential. The outcomes of this study could, however, be
enhanced in the future by including some ground-based
data and analysis. HSHDB is planning to establish gauge
discharge sites at some of the locations in the catchment.
Therefore, the grid-wise routing of runoff to the catchment
outlet and comparison of the outputs with observed runoff
data, if available, will be the study’s future focus.
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Abstract

Accurate forest biomass estimation is crucial for various applications, including carbon assessment
and forest management. Terrestrial LiDAR scanners (TLS) are recognized for their precision in
plot-level measurements. However, achieving precise volume estimation necessitates sophisticated
reconstruction models, such as Quantitative Structure Model (QSM) techniques. This study delves
into the impact of higher-order branches within QSM-based volume reconstruction. Using 10
artificially modelled trees, simulated in HELIOS++, we generate point clouds for various branch
orders. Employing TreeQSM, we assess the impact of higher-order branches on volume estimation.
Four models are created for each tree: trunk only, (trunk with 1st), (trunk with 1st and 2nd), and
(trunk with 1st, 2nd and 3rd) order branches, resulting in 40 models. Simulated point clouds are
generated using Riegl VZ-400 scanner within HELIOS++. Residuals are calculated as absolute
differences between TreeQSM-generated volumes and reference volumes, expressed as percentages.
Our findings unveil diminishing volume contributions as we include higher-order branches in a tree
model. Trunk, Trunk with 1st, Trunk with 1st and 2nd order branches contribute 43%-60%, 79%-
97%, and 92%-99%, respectively. In contrast, the 3rd order branches contribute a mere 5.17% on
average. Higher order branches correspondingly intensified volume estimation uncertainty, with
average residuals at 6.43%, 9.09%, 12.75%, and 16.96% for trunk, (trunk with 1st), (trunk with 1st
and 2nd), and (trunk with 1st, 2nd, and 3rd) order branches, respectively. These findings show
minimal volume contribution from the higher-order branches while they significantly increase the
complexity and uncertainty in volume computation. Neglecting higher-order branches could enhance
forest biomass estimation, crucial for leaf-filtering – a pre-processing task for QSM modelling.
Manual or algorithmic leaf-filtering of small branches can be burdensome. This research offers
comprehensive insights into QSM-based volume estimation, enhancing forest assessment practices.
This finding is additionally important as higher-order branches are susceptible to wind-induced
noise, more so than their lower-order counterparts.

Keywords: Volume extraction; TreeQSM; Quantitative Structure Models (QSM); Terrestrial LiDAR
Scanners (TLS); Simulated Point Cloud; Higher order branches.

Introduction

Forests, the lifeblood of our planet, play a crucial role in
maintaining ecological balance by sequestering carbon,
preserving biodiversity, and regulating climate patterns.
The accurate estimation of forest biomass is vital for

making informed decisions in areas such as climate
change mitigation, sustainable forest management, and
carbon assessment. Technological innovations,
particularly Terrestrial LiDAR Scanners (TLS), have
significantly advanced our ability to capture detailed
three-dimensional representations of forest structures at
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the plot level, providing a wealth of data for scientific
analysis.

To extract precise information about biomass from
the intricate point clouds obtained through TLS,
researchers commonly employ sophisticated methods
such as meshing or Quantitative Structure Models (QSM).
Meshing techniques, like Poisson Surface Reconstruction
(PSR), face challenges in accurately capturing complex
structures, particularly where multiple branches intersect
closely, such as in the crown of a tree. Consequently, QSM
approaches, especially the popular TreeQSM model
developed by Raumonen et al. (2013), have become
preferred due to their ability to remodel woody point
clouds using basic geometric shapes like cylinders. This
allows for efficient volume extraction, which can be
converted into biomass or carbon content using
appropriate conversion ratios.

However, the accuracy of QSM models is
intricately linked to the inclusion of different orders of
branches in the reconstruction process. This study delves
into the nuanced impact of higher order branches on
volume estimation, focusing specifically on the TreeQSM
model. We aim to scrutinize the contributions of higher
order branches to overall tree volume, determining
whether their inclusion is warranted. By examining 10
artificially modelled trees, each with variations in branch
orders, created using Arbaro tree modelling software
(Arbaro, 2015), our objective is to delineate the distinctive
contributions of different branch orders to overall volume
reconstruction. The point clouds for our analysis are
generated through simulations using the Riegl VZ-400
scanner within HELIOS++.

A critical step in QSM modelling is leaf-filtering
pre-processing, especially under leaf-on conditions during
TLS scanning. Accurate leaf-filtering for smaller-diameter
higher-order branches poses a significant challenge,
whether performed manually or through algorithms. This
challenge arises due to the intricate nature of these
branches, characterized by their dense foliage and
susceptibility to the windy effect. Moreover, higher-order
branches, characterized by dense foliage and
susceptibility to wind, introduce noise in the scanned point
cloud. This susceptibility further complicates the accurate
representation of their geometry in the reconstructed
models, impacting the overall precision of QSM-based
volume estimation.

The significance of this research lies in its potential
to refine existing forest assessment practices. Our
findings, systematically exploring the impact of higher

order branches on volume estimation, aim to provide
practical insights for enhancing the accuracy of forest
biomass assessments. Additionally, understanding the
relationship between branch orders and estimation
uncertainty is crucial for refining modelling techniques,
directly impacting tasks such as leaf-filtering - a critical
pre-processing step in QSM modelling.

As we navigate the intricacies of forest structure
assessment, the subsequent sections of this paper will
unfold a detailed analysis of materials and methodology,
present results, engage in discussion, and draw
conclusions. Through this exploration, we aim to
contribute valuable knowledge accessible to diverse
communities, dedicated to advancing the precision and
reliability of forest biomass estimation methodologies.

Materials and Methods

Model Generation Using Arbaro Modelling Software

To evaluate Tree QSM’s performance in volume
extraction concerning different branch orders, we
employed simulated data generated with Arbaro tree
modelling software. The dataset comprised 10 artificial
models, and various parameters were manipulated to
introduce diversity into the models. These parameters
included trunk length, branch size, tree shape, presence
of lobes in the trunk, trunk tapering, branch splitting, and
curvature, among others. Table 1 provides an overview
of the diverse variations introduced in these parameters.

For robust testing of the contribution of each branch
order, each tree model was generated in four variations:
(1) Trunk only, (2) Trunk with 1st order branches, (3)
Trunk with 1stand 2nd order branches, and (4) Trunk with
1st, 2nd and 3rd order branches. Due to limitations in Arbaro
software restricting the inclusion of branches beyond the
3rd order, the testing performance was confined to 3rd
order branches. This approach resulted in the generation
of four versions for each of the 10 trees, totalling 40
models. These models served as the basis for evaluating
the volume contribution of different branches and
investigating the impact of higher order branches on
volume extraction using Tree QSM.

Table 1 illustrates the diverse characteristics of the
generated tree models, with Tree 1 serving as the
reference. Each subsequent tree model introduced specific
variations, such as increased 1st order branches (Tree 2),
varied tree shape with increased base size and lobes (Tree
3), and so forth. Notably, Tree7 represents an entirely

Indian Cartographer, Vol. 44, No. 1 & 2



28

different tree, and its variations, observed in Tree 8 and
Tree 9, can be further examined. All of these variabilities
are summarized in the last column, ‘Variations
Introduced,’ of Table 1.

Table 1 provides a comprehensive summary of
artificial tree models and their variations. General
parameters, branch parameters, and variations introduced

are detailed for each tree, offering insights into the diverse
characteristics introduced in the dataset. The extensive
variability in tree characteristics aimed to ensure a
comprehensive assessment of Tree QSM’s performance
in different scenarios, allowing for a more generalized
interpretation of the results.

Table 1: Summary of Artificial Tree Models and Variations

Tree 
ID 

General parameters Branch parameters 

Variations Introduced Tree 
shape 

Base 
Size 

Lobes parameters 
Branch 
order 

Leng
th 

Tape
r 

Curv
ature 

Split
ting 

Bran
ches No. of 

lobes 
Lobe 
depth 

1 S 0.25 0 0 

T 1.5 1.2 Yes Yes 1 

Reference Tree 
1st 0.5 1.2 Yes Yes 6 
2nd 0.7 1.2 Yes No 10 
3rd 0.6 1 No No 10 

2     

T      
Increased 1st order 
branches compared to 
reference. 

1st     10 
2nd      
3rd      

3 TF 0.4 2 0.3 

T 3     
Altered tree shape, 
base, lobes, and 
increased branches. 

1st     10 
2nd      
3rd      

4 TF 0.6 2 0.5 

T 3  No   
Changed base, lobes, 
and removed trunk 
curvature w.r.t. Tree 3. 

1st     10 
2nd      
3rd      

5 TF 0.5   

T 3  No No  
Removed lobes and 
trunk splitting w.r.t. 
Tree 3. 

1st     10 
2nd      
3rd      

6  0.5 1 0.4 

T 3  No No  Introduced lobes, 
altered shape, and 
reduced branches w.r.t. 
Tree 5. 

1st     5 
2nd      
3rd      

7 C 0.6 1 0.5 

T 3 1.5 No No  
A very different tree 
with different shape 
w.r.t. Tree 1. 

1st  1   10 
2nd 0.5 1    
3rd 0.5 1    

8 C 0.6 1 0.5 

T 3 0.7 No No  
Decreased trunk taper, 
increased 1st order 
branches w.r.t. Tree 7. 

1st  1   15 
2nd 0.5 1    
3rd 0.5 1    

9 C 0.6 1 0.5 

T 3 1 No No  
Decreased trunk taper 
and 1st order branches 
w.r.t. Tree 7. 

1st  1   5 
2nd 0.5 1    
3rd 0.5 1    

10  0.5 1 0.2 

T      
Increased base size 
with lobes w.r.t. Tree 1. 

1st      
2nd      
3rd      

NOTE: S: Spherical; TF: Tend Flame; C: Cylindrical; T: Trunk; 1st: 1st order branches; 2nd: 2nd order branches; 3rd: 
3rd order branches 
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Simulation through HELIOS++

Following the generation of diverse tree models, the next
step involved simulating point clouds using HELIOS++
software, developed by (Winiwarter et al., 2022). The
simulation process was conducted using the Riegl VZ-
400 Terrestrial Laser Scanner (TLS) within the
HELIOS++ environment. The TLS scanner was
strategically positioned at four locations, each at a
distance of 14.14 meters from the tree under
consideration. Each tree model was scanned individually,

ensuring uniform configurations for all simulations. The
specifications for the Riegl VZ-400 scanner, integral to
the simulation process, are detailed in Table 2.

The laser scanner's characteristics, such as beam
divergence, pulse repetition frequency, scanning
frequency, and scan angle range, play a crucial role in
capturing detailed and accurate point clouds of the
simulated tree models. These simulated point clouds serve
as the foundational data for the subsequent volume
extraction analysis using the Tree QSM model.

Table 2 : Riegl VZ-400 Scanner Parameters for HELIOS++ Simulation

Volume extraction through Tree QSM

To extract the volume from the generated point cloud of
woody structures, we utilized Tree QSM version 2.4.1
developed by (Raumonen et al., 2013). It is noteworthy
that the version of TreeQSM plays a crucial role in volume
extraction, and for this study, the latest version was
employed. As Tree QSM is coded in MATLAB, it offers
flexibility for manipulation based on specific
requirements. The tool encompasses numerous parameters
that can be tailored to the characteristics of the site and
various factors, including tree height range.

Authors of Tree QSM suggested that three critical
parameters, namely PatchDiam1, PatchDiam2Max, and
PatchDiam2Min, play a pivotal role in the Tree QSM
algorithm and need to be carefully chosen and optimized.
It’s important to highlight that, according to a study by
(Calders et al., 2013), these parameters have no significant
impact on the final reconstruction of the tree stem and
main branches. Hence, default values were adopted for
all trees in this study, ensuring consistency in the
reconstruction and subsequent volume extraction process.

In addition to these parameters, all other settings were
maintained at their default values during the
reconstruction of QSM models. It is essential to
acknowledge that, even with the same parameter settings,
Tree QSM generates slightly different models with each

run. Therefore, following the recommendation of the Tree
QSM authors, we conducted five runs for each model
with identical parameter settings and reported the average
as the final volume. This approach provided a
standardized baseline for the study, facilitating a
comparative analysis of the volume contributions of
different branches across the diverse tree models.

Results

Volume Contribution Analysis of Different Branch
Orders

Fig. 1 illustrates the contribution of volume from various
branch orders, providing insights into the distribution of
volume within a tree. The analysis considered the volume
contribution from the trunk only, trunk with 1st order
branches, trunk with 1st and 2nd order branches, and trunk
with 1st, 2nd, and 3rd order branches. The range of
contributions is detailed in Table 3, indicating that trunk
alone contributes 43% to 60% of the overall tree volume.
When including the first-order branches, this contribution
increases to 79%-97%, and further inclusion of 2nd order
branches results in a range of 92%-99%. The average
contributions from these categories are 57%, 85.5%, and
94.8%, respectively. Notably, the higher order branches
(3rd order) contribute only 5.2% on average, emphasizing
their minimal impact on the overall volume.

Sensor RIEGL VZ-400 
Laser beam divergence 0.3 mrad 
Pulse repetition frequency 300 kHz 
Scanning frequency 120 Hz 
Scan angle range 100° (-40° to 60° from the horizontal plane) 
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Uncertainty Analysis: Higher Order Branches in Tree
QSM Volume Extraction

Fig. 2 illustrates the effect of including higher order
branches on volume extraction through TreeQSM. The
residual values in this study are calculated as the absolute
differences between TreeQSM-generated volumes and
reference volumes, expressed as a percentage of the
reference volume. In general, the residual valuetends to
increase with the inclusion of higher order branches.
However, specific trees exhibit slightly different

Fig. 1: Volume Contribution of Different Branch Orders.

Table 3: Volume Contribution Analysis for Different Branch

behaviours. For instance, Tree3 shows a minor decrement
in residual value when adding 3rd order branches
compared to when 2nd order branches are added. Still,
the residual value increases with the inclusion of higher
order branches. Similarly, Trees 8 and 9 show a slight
decrement in residual value when including 1st order
branches, but thereafter, a regular increment in volume
uncertainty is observed with the inclusion of higher order
branches. These variations in some trees are expected due
to the high variability introduced in the artificial tree
models listed in Table 1.

Quantifying the Impact of Higher-Order Branches

Branch Order 
% Volume  

Contribution Range (10 trees) 
Average Volume  

Contribution (10 trees) in % 
Trunk only 43-60 57 
Trunk with 1st order branches 79-97 85.5 
Trunk with 1st and 2nd order 
branches 

92-99 94.8 
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Fig. 2:  A1 Residual Analysis of Higher Order Branch Inclusion in Volume Extraction. The horizontal axis
corresponds to branch order, where 1 represents Trunk, 2 represents Trunk with 1st order branches, 3 represents

Trunk with 1st and 2nd order branches, and 4 represents Trunk with 1st, 2nd, and 3rd order branches.
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Discussion

Significance of Branch Orders in Tree Volume
Distribution

The analysis of volume contributions from different
branch orders provides valuable insights into the
hierarchical structure of trees. The findings indicate that
the majority of the tree volume is concentrated in the
trunk, with contributions ranging from 43% to 60%. This
dominance is expected, as the trunk serves as the primary
structural support for the tree. As we incorporate first-
order branches, the volume contribution significantly
increases, reaching a range of 79% to 97%. This
emphasizes the substantial role of the lower order
branches in contributing to the overall tree volume. The
subsequent addition of second-order branches further
refines the distribution, with contributions ranging from
92% to 99%. Notably, the contribution of higher order
branches (3rd order) averages at a mere 5.2%. This
underscores their limited impact on the overall tree
volume.

These findings have practical implications for
forest biomass estimation and management. Focusing on
the trunk and lower order branches may suffice for
accurate volume estimation, streamlining measurement
efforts and reducing complexity. This insight is
particularly relevant for tasks such as leaf-filtering in pre-
processing for Quantitative Structure Model (QSM)
techniques (Ali et al., 2024).

Implications of Higher Order Branches in QSM-
Based Volume Estimation

The examination of the impact of higher order branches
on volume extraction through TreeQSM reveals nuanced
patterns in volume uncertainty. In general, as higher order
branches are included, the residual values tend to increase,
indicating a higher level of uncertainty in volume
estimation. However, specific trees exhibit diverse
behaviours. For instance, Tree3 shows a minor decrement
in residual value when adding 3rd order branches
compared to the inclusion of 2nd order branches. This
suggests a complex interaction between different branch
orders, highlighting the intricacies of tree structure.

Trees 8 and 9, on the other hand, exhibit a slight
decrement in residual value when including 1st order
branches, followed by a consistent increment in

uncertainty with the inclusion of higher order branches.
These variations are expected due to the artificial tree
models’ high variability, as outlined in Table 1. The
observed irregularities underscore the importance of
considering tree-specific characteristics in QSM
modelling.

These findings emphasize the need for careful
consideration of higher order branches in QSM-based
volume estimation. While their direct volume contribution
is minimal, their influence on uncertainty highlights their
indirect impact on accurate volume assessments.
Understanding these dynamics contributes to the
refinement of QSM techniques, guiding improved forest
assessment practices.

Although this study focuses on analysing up to the
3rd order branches, the inclusion of higher-order branches
(4th order and beyond) may further refine volume
estimation. Due to the limitations of the Arbaro modelling
software, we were unable to assess their contributions,
but future work should explore their significance in real-
world datasets, particularly in complex forest structures
where these branches may play a more substantial role.

Conclusions

In conclusion, our comprehensive investigation aimed to
enhance our understanding of the intricate relationship
between branch orders and volume estimation in forest
biomass assessments, particularly concerning the Tree
QSM model. The significance of accurate forest biomass
estimation cannot be overstated, given its pivotal role in
climate change mitigation, sustainable forest
management, and carbon assessment.

Insights from Volume Contribution Analysis

Through meticulous analysis of 10 artificially modelled
trees, varying in branch orders and characteristics, we
unveiled valuable insights into the distribution of volume
across different branch orders. The dominance of the trunk
in contributing to overall tree volume (43% to 60%)
underscored its primary structural role. Notably, the
substantial contributions of first-order (79% to 97%) and
second-order branches (92% to 99%) indicated that
focusing on these lower order branches may suffice for
accurate volume estimation, streamlining measurement
efforts.

Quantifying the Impact of Higher-Order Branches



33

Nuanced Understanding of Volume Uncertainty

The exploration of volume uncertainty associated with
the inclusion of higher order branches in TreeQSM-based
estimation revealed nuanced patterns. While, on average,
higher order branches (3rd order) made minimal direct
contributions (5.2%) to tree volume, their inclusion
correlated with increased uncertainty in volume estimates.
This understanding emphasizes the need to carefully
consider the measurement of higher order branches and
raises questions about their practical significance in forest
assessments.

Implications for Forest Assessment Practices

These findings not only contribute to the academic
understanding of tree structure but also hold practical
significance for forest management strategies and climate
change mitigation efforts. Prioritizing measurements on

the trunk and lower order branches can enhance the
efficiency of volume estimation techniques, especially
in scenarios where detailed measurements of higher order
branches might pose challenges. Moreover, understanding
the dynamics of uncertainty associated with higher order
branches contributes to the ongoing improvement of QSM
techniques, guiding more accurate and reliable forest
biomass assessments.

Overall, these findings have broader implications
for forestry applications, particularly in forest
management and biomass estimation workflows. By
concentrating on the trunk and lower-order branches,
forest managers can streamline efforts to measure tree
volume and biomass, which are critical for carbon
assessment and climate change mitigation strategies.
Furthermore, this research supports the development of
more efficient TLS-based forest monitoring systems,
offering practical tools for sustainable forest management.
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Introduction

Amidst the digital odyssey that shifted paradigms from
binary machines to cognitive systems, the domain of
remote sensing evolved into a cornerstone discipline,
revolutionising our understanding of the Earth’s intricate
mechanism; enabling innovations across diverse sectors.
Consequently, with the convergence of advanced sensors
and sophisticated satellite capabilities, there is an
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Abstract

Driven by diverse data sources, the dynamic landscape of remote sensing is rapidly evolving along
with technological advancements. Albeit, with the significant surge of geospatial data in veracity
and volume, the conventional centralised data sharing and storage mechanisms encounter a multitude
of challenges such as scalability, limited interoperability, vulnerabilities to single points of failure,
and potential alterations consequently having adverse implications on governance. Thus, in times of
expeditious developments, it becomes vital to recognise the need for transformative shifts in our
methodology as we transition towards Web 3.0. Guided by this principle, the present research paper
advocates for a decentralised approach underpinning a data-driven geospatial ecosystem, to develop
a blockchain-based prototype using Ethereum and Inter Planetary File System (IPFS) via smart
contracts written in Solidity with quantifiable indicators that operate on reward mechanism to
incentivise users through Proof of Implementation (POI) in order to foster a collaborative and
sustainable network. This synthesis not only catalyses a pivotal shift within the geospatial domain
but also holds immense potential for governance as the decentralised framework enhances data
security, transparency, and accessibility, aligning perfectly with its tenets; ushering a new era of
smart governance that consequently, optimises resource management. By providing a robust and
trustworthy framework, this study embarks on a quest toward unlocking new avenues of accessibility,
credibility, and sustainability.

Keywords: Blockchain; Smart Contract; Decentralisation; Geospatial data sharing; Smart governance.

unprecedented surge in the acquisition of geospatial data
from an array of data sources, including Earth Observation
(EO) satellites, Unmanned Aerial Vehicles (UAV), Light
Detection and Ranging (LiDAR) sensors, Global
Navigation Satellite Systems (GNSS), as well as Internet
of Things (IoT) devices, catapulting into an era of
information abundance (Wulder & Mask, 2018). The
traditional centralised models, often employed to manage
vast data repositories, are struggling to cope with the sheer
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volume and diversity of data generated by remote sensing
technologies (Li et al., 2018). Further, as the current global
scenario reflects these intricate predicaments, disruptions
in access to geospatial data and its dissemination across
the internet have emerged as significant challenges,
hindering the seamless flow of information critical for
real-time decision-making and policy framework within
governance and resource management. Ergo, it also raises
concerns about data ownership and control along with
security, underscoring the pressing need for a more
efficient, innovative, and decentralised architecture within
the realm of geospatial administration (Mavroudi, E. et
al., 2020).

With the first implementation of blockchain
technology through the creation of Bitcoin cryptocurrency
by “Satoshi Nakamoto”, decentralisation emerged as a
transformative alternative that streamlines data
acquisition, storage, and dissemination. As illustrated in
Figure 1, a blockchain is a structured chain of data blocks,
each containing transaction records that are
cryptographically linked to the preceding block. Its
characteristics of immutability, transparency, and
consensus through a distributed network, coupled with
its decentralised nature, establish an environment where
data can be securely stored, verified, and shared among
participants without intermediaries (Nakamoto, S., 2008).
Further, blockchain transactions with smart contracts in
user-to-provider interactions operate on a decentralised
ledger system, ensuring secure and transparent exchanges.

Presently, while practical implementations remain
limited due to their novel concept, proposals for a
decentralised framework to store and share geospatial
have been put forth in the existing literature. In a study
by Molesky et al. (2008), blockchain is utilised as a
database for monitoring satellite and debris orbits where
it operates in distinct configurations but though it ensures
the integrity of data and incorporates smart contracts, the
study does not capitalise on other advantages of
blockchain technology, such as enhancing trust and
providing incentives. Another study by Leka et al. (2019),
introduces a blockchain-based framework (D-GIS) for the
storage and distribution of geospatial and though it

leverages blockchain with an incentive mechanism to
attract users, the data still resides in centralised storage
which negates our objective. Howbeit, the research
undertaken by Papantoniou, C. and Hilton, B. (2021)
proposed a concept known as “Geoblockchain,” which
synthesised blockchain technology with Geographic
Information Systems (GIS) which could potentially
provide insights into the distribution, movement, and
interactions of transactions in a spatial context,
contributing to a deeper understanding of blockchain
activities from a geographic perspective which is the
catalyst to our engineering prototype.

Fig. 1: Blockchain Structure for Geospatial Data

Thus, by exploring the interplay between the
substantial generation of geospatial data and the transition
towards decentralised Web3 platforms, we aim

i. To develop a geospatial blockchain model for a
secure data-sharing mechanism to ensure data
integrity, access control, and traceability for smart
governance.

ii. To build a robust and decentralised geospatial data
storage for the sustenance of the blockchain model.

Indian Cartographer, Vol. 44, No. 1 & 2
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Materials and Methods

Geospatial Application Architecture

As shown in Fig. 2, the entire system operates on a
tripartite architecture which has a sequential operation
when transactions are initiated from geospatial data users
to providers. To begin with, the front-end was developed
using React.js which is a JavaScript library used for
building dynamic user interfaces (UIs) while minimising
the need for direct manipulation of Document Object
Model (DOM), which can be resource-intensive. The
integration of Metamask, a browser extension, provides
users with a secure gateway to access their Ethereum
accounts, enabling them to sign smart contracts. At the
core of the architecture lies the back-end, which processes
the user requests, interacts with the Ethereum Virtual
Machine, an open-sourced decentralised computing
environment, and stores geospatial data on IPFS, which
is a distributed P2P protocol designed for storing and
sharing content in a resilient, permanent and decentralised
manner. While Node.js acts as the bridge between the
front end and the back end, Web3.js serves as the
intermediary library that enables the system to deploy
transactions and communicate with Ethereum nodes. The
smart contracts, written in Solidity were developed in
Remix IDE which defined the logic for access control,
storage, and management of geospatial data. The Truffle
framework was used to execute smart contracts, in
conjunction with Ganache which streamlined the testing
and deployment of smart contracts on a local Ethereum

environment. This combination ensures efficient contract
deployment and thorough testing which minimises
potential vulnerabilities when executed on the Mainnet.

Design Implementation

Geospatial data is acquired and uploaded in all levels of
processing (raw, georeferenced, orthorectified,
geometrically and/or radiometrically corrected,) and data
formats (CEOS, GeoTiFF, SAFE, HDF, NetCDF, KMZ/
KML, GeoJSON, JPEG, ENVI, GRIB, LAS and LAZ) as
well as GNSS formats (RINEX, SP3, NMEA, BINEX
and IONEX) in the IPFS network through EVM. Though
different data providers adhere to distinct naming
conventions; upon storing in the IPFS, the geospatial data
sheds its association with these conventions. Instead, it
is linked to a generated CID (Content Identifier) which is
stored within the Ethereum blockchain along with its
metadata which is later used for retrieval when required.
From the users, the system starts with user registration,
where once successful, it is hashed and a new block is
added after a consensus agreement by all the nodes. It is
then broadcasted across the entire blockchain network
thereby having the privilege and direct admittance into

Fig. 2: Architecture and Design Implementation
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the private network. When the users get access to the
website through their unique account ID, they interact
with a map carousel and define their search criteria such
as type of geospatial data, level of processing, satellite
sensor, data format, geographic area, time range, and other
filters that suit their requirements. Upon submitting the
criteria, the front end sends a request to the IPFS network
to retrieve the content based on the CID that matches the
search criteria. The retrieved geospatial data along with
the metadata is displayed within the UI, allowing the user
to preview the image before confirmation. After
confirmation, the account submits a transaction that
triggers the retrieval process. The smart contract receives

As depicted in Fig. 3 and Fig. 4, the geospatial data
was effectively uploaded onto the IPFS network. In this
process, the geospatial data was broken into smaller
parcels as illustrated in Figure 5, each with a fixed size
and a unique SHA-256 cryptographic hash for
identification. Additionally, a root CID is generated for
the entire dataset, representing the top-level hash of all
the parcels combined was generated QmZXzw1Ly
ECpGtQL8ujr8VTEDqaqCSSpGz3 pn2UCa9xF16. This
value was compiled and subsequently stored within the
smart contract situated in the EVM. Using my registered
Meta Mask account, the front end seamlessly established
communication with the decentralised backend which was
evident as the frontend successfully displayed a preview
of the desired data after applying the specified user
criteria, as shown in Fig. 6.

the request retrieves the associated CID and provides
access to the data on the IPFS through Web3.js where all
the interactions and transactions related to the retrieval
process are recorded on the Ethereum network, ensuring
transparency and accountability.

Results and Discussions

For the purpose of initial operation on the Mainnet, we
utilised a raster dataset sourced from Resourcesat 2 LISS-
III. However, it is important to note that the designated
data provider will upload the geospatial data in the ultimate
operational execution over the main IPFS network.

Fig. 3: Uploaded Geospatial Data in IPFS Network

Fig. 4: Successful Transaction in Ganache

Upon clicking the confirm button, the website
underwent a brief loading phase as it retrieved the
geospatial data from the IPFS via the blockchain. The
request uses the root CID from various peers of IPFS
nodes within the network. As each parcel is retrieved,
the original image is reconstructed by reorganising them
based on their order and relationships. Here, through the
Ethereum that transfers the CID, IPFS employed a
Merkle-DAG structure, where each node points to its
parent nodes. Once retrieved, the data was automatically
reconstructed and downloaded from the web browser to
our local computer. Upon implementation of the
framework, the integration of Ethereum heightened data
confidentiality and its efficient retrieval mechanisms,

Indian Cartographer, Vol. 44, No. 1 & 2



38

significantly elevating the accessibility and expediency
of geospatial image retrieval — a crucial aspect for
informed decision-making and smart governance as it
allows governments to handle sensitive and critical data
with confidence in limited time. Operating as a P2P
network, direct communication reduces dependence on
intermediaries minimising the potential for delays caused
by third-party involvement in governance, leading to
accelerated data transfer and diminished overall energy
consumption in transactions. The execution of smart
contracts empowered data providers to exert precise
control over access permissions for the management of
geospatial data sharing environment. It ensures that only
authorised individuals or entities can access specific

Fig. 5: Geospatial data breakdown in IPFS

Fig. 6: Preview of the requested Geospatial Data

geospatial data. In a smart governance context, this is
vital for ensuring that sensitive information is only
available to those with the appropriate permissions,
safeguarding national security and privacy.
Complemented by the storage infrastructure established
on IPFS, only metadata and hash values were stored within
the block, with the complete geospatial data residing in
IPFS. This yielded a marked reduction in data redundancy
and on-chain geospatial data volume, resulting in fewer
transactions and reduced gas fees (ETH rate) required
for data administration within the Ethereum network. This
is particularly beneficial for governments with limited
resources, as it allows them to allocate funds more
efficiently.

Given the pre-existing possession of an Ethereum
wallet by the user, each valid registration extends to them
a complimentary free purchase during their first visit.
Subsequently, upon re-engagement, the provision of a
substantiated Proof of Implementation (PoI) pertaining
to their application of the resources for fostering
sustainable development and community empowerment
warrants the issuance of a corresponding token. These
tokens hold utility within the internal system, enabling
transactions and participation incentives, thereby
nurturing an engaged and collaborative ecosystem of
geospatial data users that transcends data-sharing
limitations. This, in turn, established a virtuous cycle of
information exchange, wherein users are not only
beneficiaries but also active contributors to the growth
of the repository, fostering a self-sustaining ecosystem
of geospatial information. Consequently, this
decentralised architectural approach ensured unwavering
data transaction traceability and immutability, thereby
enhancing transparency and accountability—an
imperative for upholding the integrity of geospatial data
sharing initiatives.

Conclusion

The fusion of innovative systems, namely the Ethereum
and IPFS within the domain of remote sensing, presents
a robust framework that addresses challenges in geospatial
data storage and sharing while paving the way for smart
governance. With regards to its contribution to the UN
Sustainable Development Goals (UNG, 2015), the
proposed framework caters to all the goals; primarily
aligning with Goal 9, i.e., Industry, Innovation, and
Infrastructure, by advancing innovative solutions for
efficient and decentralised storage, contributing to the

Geospatial Blockchain: A Catalyst for Smart Governance
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establishment of resilient infrastructure and sustainable
energy consumption for geospatial data management.
Further, the efficient storage and tamper-proof nature of
the blockchain facilitated by the framework contribute
to collaborative research efforts enhancing accountability
and fostering collaborations among various institutions
(Goal 16: Peace, Justice, and Strong Institutions). Thus,
it can support developmental work and decision-making
process that cover a wide range of social, economic, and
environmental issues as they are all interconnected such
as remote sensing data is indispensable for monitoring
and mitigating poverty (Goal 1: No Poverty), hunger and
food security (Goal 2: Zero Hunger) as well as climate-
related challenges (Goal 13: Climate Action). In
conclusion, this framework not only revolutionises
geospatial data management but also provides a solid
foundation for smart governance and sustainable
development. It ensures that critical information is
handled securely, accessed promptly, and utilized
effectively for the betterment of communities and the
environment. The transparency, accountability, and cost-
effectiveness it brings to data management are

indispensable in the pursuit of sustainable and efficient
governance.

By expanding the framework to incorporate live
data will transform the model into an adaptable repository,
furnishing real-time insights into diverse variables like
weather trends, occurrences of natural calamities, and
alterations in land usage. Additionally, the following
propositions can also be considered for future work:
i. Establishment of mechanisms for fault tolerance

to ensure robustness in the face of unexpected
scenarios

ii. Optimisation of the transaction verification time
to ensure that the blockchain operations remain
efficient, minimising delays in geospatial data
sharing and retrieval processes

iii. Evaluate the storage space to manage the growth
of geospatial data over time, preserving the
scalability and sustainability of the system
Thus, in essence, the development of a functional

model using Ethereum and IPFS for storing and
disseminating geospatial data represents a significant
stride toward achieving sustainable governance.
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Introduction

Synthetic Aperture Radar (SAR) is an active instrument,
used for day and night imaging in all-weather condition.
Transmission and reception within the PRI cycle ensures
the construction of a line at coarse resolution. Since SAR
is a side looking ranging instrument, range measurement
is taken into consideration to synchronously transmit and

receive coherent signal leading to construction of raw
data. The mechanical antenna using single or multiple
feed elements or phased array antenna can be employed
in monostatic fashion for acquisition of an image (Walter
G. Carrara.). The antenna is pointed to the desired Area
of Interest and signal is transmitted from the feed elements
within the PRI cycle. The bandwidth of the transmitted
signal determines the actual resolution achieved in the
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Abstract

Synthetic Aperture Radar (SAR) is an active instrument where an area on ground is illuminated by

the signal transmitted from the sensor in microwave spectrum and the convolved backscatter return

from the ground is received by the polarized antenna to form an image. Sufficient guard band is

provided in a Pulse Repetition Interval (PRI) cycle to switch the antenna from transmission to reception

and vice versa. The 3dB signal of the main lobe is collected in receiver to form an image. Data

Window at receiver decides the collection duration of signal and Start Window Start Time (SWST)

determines the start location of collection of radar return from the ground. The pointing of beam

signal generated by the sensor and the SWST plays a key role in making seamless radiometric product

in elevation. A small pointing error at the antenna or change in the opening of SWST at the receiver

lead to collection of signals other than 3dB range of main beam and hence results in radiometric

misbalances in SAR data, prominently visible in high frequency low swath X band sensors. A

radiometric correction method is developed in Data Processing Chain of SAR sensor which utilizes

the generic beam profile of individual beams along with the data specific Start Window Start Time

(SWST). This allows to effectively generate the seamless radiometric product, even in the presence

of pointing error in the antenna. Peak estimation from the coarse resolution raw data along with

sensor parameters is used for estimation of mismatch between the actual and expected centre of the

signal. This study is done on X band SAR imaging system with parabolic antenna using mechanical

steering to cover wide off-nadir range. This method of radiometric correction is found to be especially

suited for multi-beam mode imaging technology.

Keywords: SAR, antenna, radiometry, window start time, data window, main lobe.
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data. The monostatic antenna is then switched to reception
mode within the PRI cycle to receive the signal return
from the previously transmitted signal determined by the
Number of Pulses in Air (NPRI). Overall reception time
of the data window determines the swath. Acquisition of
multiple such PRI cycles enables construction of raw data
of multiple lines. The reception of the antenna is switched
on such that to acquire the 3dB return of the main lobe of
the transmitted signal. This is done by considering the
ranging of the signal of the side looking SAR. The
switching on time of the antenna for reception is known
by the term Start Window Start Time (SWST).

Single SAR system can image in multiple
acquisition modes which allow for coverage of narrow
to wide swath ranging from high to medium resolution
respectively. To further enhance the capability of wide
swath and short revisit time, multiple beams are employed
in single acquisition. The selection of multiple beams can
be done mechanically in parabolic antenna or can be
managed electronically in phased array antenna,
depending on the choice of antenna in SAR system
specific to the sensor.

The beam profile of the antenna is used for antenna
pattern correction in elevation (Jianjun Huang, Jie Chen,
2022). The beam profile can be estimated in controlled
environment before the launch of satellite (SAND2006-
2632 Unlimited Release Printed April 2006). It can also
be estimated from the gamma product of the homogeneous
region such as amazon rainforest after the launch of
satellite (A. P. Luscombe and A. Thompson, 2001)
(Manfred Zink, Betlem Rosich, 2002). This is a part of
radiometric calibration procedure done from time to time
to monitor the health of satellite in operational period.
By default, the antenna pattern fall of the raw data in
range can be used to observe the profile patterns for
individual data. Necessary care should be taken to avoid
the domination of coherent target while estimation of
profile from the raw data (Maneesha Gupta, B.
Kartikeyan, 2014).

Pointing error at the time of transmission or
calculation of improper range for SWST at the time of
reception lead to recording of region outside the 3dB
width of the main lobe. Such signal suffer lack of
radiometric information and radiometric misbalance is
observed even after radiometric normalization using the
antenna models. This kind of errors are more evident in
high resolution sensors employed in X band. The antenna

beam width of such high frequency systems is quite
narrow, thereby leading to narrow swath of high
resolution. Even a small error in pointing or calculation
of SWST lead to quite presentable radiometric errors
present in the data due to imaging outside the 3dB width
of the main lobe of the narrow beam width signal.

The current paper presents an approach for
determination of SWST error present in the data. The
same can be calculated in term of pointing error in degree.
The actual peak of the data within the swath is computed
and compared with ideal peak location expected in the
data in the ground plane. The difference of the two is
converted to slant range plane to determine the error at
reception. This is converted to timing error in SWST at
the reception. It can also be converted to pointing error
in terms of degrees at transmission. This information is
useful for adjustments of feed elements in future
acquisitions, Also, this information is used while radio-
metric normalization using the antenna models. It was
found that incorporation of this information in radio-
metric normalization leads to balance radiometric
products even when acquired outside the 3dB width of
the main lobe.

Theory and Basic Operation Principles

Transmission of signal of pulse width duration within the
PRI cycle from the antenna illuminates the area of interest
on ground. In monostatic antenna, same antenna transmits
the signal to the ground and receive the signal backscatter
from the ground from previous PRI cycle as shown in
Fig. 1 (left). This signal consists of the main lobe where
70 percent of the energy is accumulated within the 3dB
width of the window. Although the signal does not only
consist of main lobe, but also many side lobes and
gradually diminishes away from the main lobe. Fig. 1
(right) shows the signal profile on the ground of the signal
generated from the X band sensor. The backscattered
signal from the ground returns towards the sensor after a
specific PRI cycle is determined by the distance between
the ground and the sensor, speed of the sensor and the
PRI duration as given in equation 1.

)
xVs2

ct
int(nPRI                                     Eq. (1)
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Where, c is the speed of light, t is the pulse width,
V s is the speed of the sensor and PRI is the pulse interval.
The antenna is switched to reception mode and the signal
is received at SWST for data window du- ration. The null
to null and 3dB illumination of the transmitted signal is
shown in figure 2(a) and figure 2(b) respectively. The
SWST is calculated using the ranging equation within
the PRI duration. Guard band need to be maintained
properly while switching from transmission to reception
and vice versa. Precise beam pointing at the time of
transmission and determination of accurate SWST at
reception is necessary to receive the signal return within
the 3dB width of the signal. Any lead or lag in the

Fig. 1: Mono static antenna beam profile generation and data reception. (Left)
PRI cycle (Right) Beam profile from X band SAR sensor

estimation of SWST results in the shifting of data window
outside the 3dB width region and collection of signals of
less backscatter return from the target. The
conceptualization of the shifting of data window in near
and far range due to pointing bias or ambiguity in SWST
calculation is shown in figure 2 (c). SWST window play
a major role in capturing the 3dB region data. Any lead
in opening of window result in early collection of data as
shown in figure 4, thereby information content in near
range go missing. Similarly, any delay in opening of data
window result in lack of information content in far region
of the data. The same effect is imposed on the data on
improper pointing of the beam at the time of transmission.

Fig. 2: a) Null to null beam pattern b) 3dB illumination profile of the transmitted signal
c) Effect of Pointing Error and SWST bias on data window

Similarly, any delay in opening of data window
result in lack of information content in far region of the
data. The same effect is imposed on the data on improper
pointing of the beam at the time of transmission. The
actual peak of the data can be used for the estimation of

SWST error, and can be converted to pointing error in
degrees. The slant range at start is known for the data.
The ideal slant range peak is expected to be at the centre
of data as the peak of 3dB occur at the centre. Hence, the
ideal peak range is calculated using equation (2) as
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2

N
RR p

rsideal_peak  Eq.                          (2)

Where, R
s
 is the slant range at start of the swath,

 r
 is the sampling distance, and N

p
 is total number of

pixels in the swath. The actual peak of the data is
estimated from the raw data at coarse resolution. This is
done to avoid any ambiguities due to the presence of
strong coherent scatterers within the swath. Also, the
values are averaged over all azimuth lines to further avoid
bias towards the presence of coherent dominant scatterers
even at coarse resolution. The 3dB beam width of the
signal is subtracted from the actual peak estimated from
the data using equation (3) to provide the start slant range
corresponding to this peak value.

width_dB3_startpeak_actualpeak_actual_start RRR     Eq. (3)

Where, R
start_3dB_width

 is the slant range at the start of
3dB beam width of the antenna given by equation (4) as

L

88.0
width_dB3

 
                                 Eq. (4)

Where, λ is the wavelength and L is the length of
the antenna of the SAR system. To obtain the actual time
difference termed as SWST bias, these starts slant ranges
are converted into time as given in equation (5) and
equation (6) respectively, as

c

R2
t start_ideal

start_ideal


                            Eq. (5)

c

R2
t peak_actual_start

start_actual


                   Eq. (6)

NPRI and PRI are then used to determine the actual
SWST as mentioned in equation (7) and equation (8) as,

PRINPRItSWST start_idealideal          Eq. (7)

PRINPRItSWST start_actualactual       Eq. (8)
The   difference of     and 

gives an error in the calculation of the SWST time in
reception chain using equation (9) as

start_actualstart_idealbias ttSWST                 Eq. (9)

The same can be converted into the pointing bias
at the time of transmission by estimating the look angles
at ideal and actual peak using equation (10) an equation
(11), given as
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      Eq. (10)
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    Eq. (11)

Where, RE is the Earth Radius and H is the height
of the satellite. Pointing error is then estimated as given
in equation 12 as,
𝛿𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔_𝑒𝑟𝑟𝑜𝑟 = 𝜃𝑖𝑑𝑒𝑎𝑙_𝑝𝑒𝑎𝑘 − 𝜃𝑎𝑐𝑡𝑢𝑎𝑙_𝑝𝑒𝑎𝑘          Eq. (12)

If 𝛿𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔_𝑒𝑟𝑟𝑜𝑟  is negative, the reception
window starts before hand, and hence less signal strength
is observed in near range data, while positive

𝛿𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔_𝑒𝑟𝑟𝑜𝑟  presents the delay in opening of data
window, leading to losing signal strength at the far range
signal. The overall flow of the algorithm for generation
of precise radiometric product both in the presence and
absence of SWST error in the data is represented in Fig. 3.
The algorithm is dependent on individual data for the
calculation of actual peak, extraction of 3 dB region from
the antenna model and then correct the elevation pattern
from the processed Slant Range Detected product at high
resolution.

Fig. 3: Flow Chart for correction of radiometry in elevation in presence of SWST error
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Results and Discussion

Pointing error and SWST errors computation in Initial
Phase Operations of the sensor help in establishing a
feedback mechanism to ensure adjustments in future data
acquisitions to avoid inconsistencies and generate proper
radiometric normalized products. It also helps in
radiometric correction of biased data using antenna model
or statistical approach. Figure 4 represent image which
do not contain any SWST or pointing bias. The image is

acquired in right look mode at an off-nadir distance of
375 km with a look angle of 32.51 degree. The Start Slant
range, ideal and actual peak range values along with
SWST error and pointing bias calculated using the current
algorithm for the image is present in table 1. Since the
image do not suffer from any SWST or pointing error,
the actual peak of low-resolution data matches closely
with the expected location at the centre as can be seen
from row 1 of column 3 and column 4 in Table 1.

Fig. 6 (b) represent the image of the same area. To
verify the effect of SWST error and pointing bias on
image, other acquisition parameters were kept similar.
Image mode is right and off nadir distance is 362 km.
The image suffers pointing bias of 0. 10 degrees. Presence
of SWST time error impacts the peak shift in the expected
and ideal scenario as observed in row2 of column 3 and 4
in Table 1 respectively.

Since actual slant range peak occur before the ideal
slant range peak, data suffer degradation in radiometry at

Start Slant 
Range 

 
 

Ideal Slant  
Range Peak 

Actual       Slant  
Range Peak 

SWST error 
(microseconds) 

Pointing   Bias 
(degree) 

 

697603  704070 704098 2.5 0.009 
683814  689714 688835 8.1 0.10 

Fig. 4: (a) X band image at 1 m resolution within 3dB illumination.
(b) X band image at 1 m with late opening of SWST

Table 1: SWST and Pointing Error calculated from data in Fig. 6 (a) and 6 (b) respectively

far range. This pointing error need to be taken into
consideration while antenna pattern correction for
radiometric normalization. Similar evaluation of presence
of SWST time bias or pointing bias is done for other
images to qualify the need for accurate antenna pattern
correction especially in presence of pointing bias. Table
2 represents the data acquired from X band sensor at 1 m
resolution at an off- nadir distance of 197 km. The 3dB
swath for the data is estimated to be 10km. The pointing
bias present in data is not taken into consideration while
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doing antenna pattern correction and the correction is done
using traditional approach from the centre of the data.
The image thus suffers radiometric degradation at far
range as presented in Fig. 5(a). The same image is now
accounted for presence of pointing bias at the time of

approach where this error is not taken into consideration
as evident from the antenna pattern of the corrected
product presented in figure 5 (c). when the proposed
technique is used for radiometric correction, balanced
radiometric product is obtained. The same is proved by
the antenna pattern of the corrected product presented by
orange line in graph of figure 5 c). The validation of the
algorithm is also done for data sets which do not suffer
from pointing error to establish the robustness of the
current approach. The data which do not suffer pointing

antenna pattern correction using the current approach and
presented in Fig. 5(b). Pointing error of 0.29 degree is
noted as presented in Table 2.

Since image suffer considerable pointing error,
product suffer degradation in radiometry using traditional

Fig. 5: (a) Product of X band sensor at 1 m resolution without pointing error consideration in radiometric correction
(b) Product of X band sensor at 1 m resolution with pointing error consideration in radiometric correction

using the proposed approach. (c) Antenna Pattern of 5(a) [blue] and 5(b) [orange] after correction

Table 2: SWST and Pointing Error calculated from data in Fig. 5

Start Slant 
Range 

 
 

Ideal Slant  
Range Peak 

Actual       Slant  
Range Peak 

Pointing   Bias 
(degree) 

 

607144  612853 611569 0.29 

error at transmission is radio metrically balanced from
the centre of the swath for valid region of 3dB. The peak
of the data in such case match approximately with the
product generated using the current approach. Fig. 6
represents an image from X band sensor at 1 m resolution
where the pointing error is almost negligible as shown in
Table 3. The proves that the current approach works in
generic fashion for all cases in the presence and absence
of pointing error in the data.

When multiple beams are operated together in
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multiple iterations to increase the coverage in case of
mosaic mode acquisitions, radiometric correction to
ensure seamless mosaic across range in presence of
pointing error becomes a challenging task. Radiometric
correction using current approach ensure seamless
radiometry across beams since, corrections are performed
across the peak in individual beams. This ensures
accommodation of varying pointing error in individual
beams at multiple iterations. To acquire the wide swath
of 25km x 25km from X band of narrow beam width, 4
beams are operated simultaneously one after the other
for 6 iterations to acquire the swath of 25 km x 25 km.
Each iterations of different beams suffer from different
pointing error as shown in figure 10. This method of
radiometric correction could successfully estimate the
pointing bias of each iteration and correct the radiometry
accordingly. As a result, seamless radiometry could be
achieved across the full swath as shown for multiple

Fig. 6: X band image at 1 m resolution with pointing bias correction using the proposed method for image
where pointing error is negligible

Table 3: SWST and Pointing Error calculated from data in Fig. 6

Start Slant Range Ideal Slant Range Peak Actual       Slant Range Peak Pointing   Bias (degree)  

837794 845270 844891 0.02  

iteration of one beam in Fig. 7(a).
Estimation of pointing error and application of

antenna pattern correction while accommodating this
error is necessary either in statistical correction or model-
based correction approach for achieving high quality
radiometric products in active instrument like SAR. IT
becomes especially necessary in multi beam acquisition
to ensure seamless radiometry across beams.

Conclusion

SAR is an active instrument where signal is transmitted
and then received back at the sensor which is
backscattered from the area illuminated within the beam
width of the signal. To properly receive the backscatter
information from the region, it is necessary to coordinate
the antenna in a manner to capture within the 3dB beam
width of the backscattered signal. Since 3dB signal
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contains 70 percent of the power of the signal, it ensures
the proper strength of the region. If the feeder element of
the antenna suffers pointing bias due to system error or
due to inaccurate calculation of SWST time for switching
on the reception of signal, image may suffer radiometric
degradation, due to imaging outside the 3db beam width

of the signal. It is necessary to correct such errors in the
system in the Initial Phase Operations for smooth
functioning of the sensor. Also, it is mandatory to consider
these values while extraction of elevation antenna patterns
from the antenna model to provide seamless radiometry
throughout the swath after radiometric normalization.

Fig. 7: (a) Multiple Iteration in multi beam imaging mode.
(b) Pointing Bias present in individual iteration of different beams (4) in multi beam acquisition
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Introduction

Now-a-days Deep Learning technology has reached in to
all domains such as Speech, medical, agriculture, etc.
Many deep learning based target detection models are
developed and evolved to improve the accuracy (Zhang
et. al.). In general, geo-spatial data is vast in dimensions
and volume, and with lots of temporal data. Since, the
data is in large volumes, analysis on temporal data takes
huge efforts and man power. Deep Learning models are
giving the benefits of detecting the targets with higher
accuracies on Geo-spatial data (Chen et. al., Geng et. al.,
Chen et. al., Liang et. al., Lyu et. al.). Region-based deep
learning models (Zhao et. al.) are giving better
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Abstract
_______________________________________________________________________

Speech recognition system and natural language processing technologies have gained significant
importance in recent developments, leading to development of powerful voice-based interfaces,
often called as Human Computer Interface (HCI). Voice is one among the top most multimedia
element in HCI. Deep learning technology is popularly known for Speech Recognition and Target
detection. With vast number of Earth observation satellites/payloads, huge volume of geo-spatial
data is generated, and there is a need/surge for developing highly efficient HCI techniques towards
automated target detections. Spatial data analytics require past and present information which will
be stored in the database. Extraction of information from database without knowing the structure
and query language is very difficult. In this paper, a framework for target analytics on remote sensing
imagery is proposed. The framework is divided into five modules, viz. Target detection, Keyword
detection in speech, Speech-to-text, text-to-query and Analytics. The proposed framework gives an
end-to-end solution for extracting the information from the temporal geo-spatial data with 88%
accuracy in keyword detection.

Keywords: Deep learning, satellite data, remote sensing, neural networks, speech recognition,
analytics.
________________________________________________________________________

performances on remote sensing data. Ren et. al.(2016)
improved the region based technique by using CNN
(Faster-RCNN). It is tested on MS COCO, PASCAL VOC
2007 and 2012 dataset and shown good accuracy. Some
of the DL architectures such as Recurrent NN,
convolutional NNs (CNNs), long short-term memory
model, deep belief networks and deep auto-encoders have
already been explored for Remote Sensing tasks. Remote
sensing image covers large amount of area compare to
still camera. Hence, Lots of targets may be detected.
Analyzing large number of target detection results of all
temporal data is very difficult even though a database is
used to store all the targets.
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Another main issue is to get the useful information
from the database and query processing. Information
extraction from the database requires proper query which
will have standard syntax and semantics. User who has
knowledge in the database and query languages can only
extract the information from the database.

Speech recognition has become an essential part
of a Human-Computer Interaction system with fast-
growing technology (Bell et. al.). Speech based interactive
applications should be able to process the human
languages (Ochiai et. al.). Natural Language Processing
(NLP) is the branch of AI that focuses on understanding
the human computer interactions of human language. NLP
combines computational, statistical, machine learning,
rule-based modeling of human language and deep learning
models. Speech recognition systems are providing better
accuracies due to deep learning models. Speech systems
recognize the speech and converts in to text. (Smali et
al.) used Bayesian network for resolving the speech
understanding problem. Authors used Bayesian network
for classification with unsupervised learning.

Text to query generator is another technique to
convert text to database understandable query. Database
understand able query should follow systematic rules like
syntax and semantics. This technique is very useful when
user do not have knowledge on query languages.
Xuanfeng et. al. designed a speech to SQL tool which
converts human speech to a SQL query statement. It has
an Automatic Speech Recognition (ASR) and text-to-SQL
component. However, due to performance degradation
in ASR, a new Network named Speech SQL Net
(Xuanfeng et. al.) is proposed to directly translate human
speech into SQL queries without an external ASR step.
Speech SQL Net has tested on dataset named Speech SQL,
by piggybacking the widely-used text-to-SQL datasets.
Jose et.al. proposed transformer based language models
to handle the sequences of text. However, Transformers
give better accuracy for limited size of text and Training
time is more.

In this paper, we propose a framework for
extracting the information from the remote sensing data.
The proposed methodology extracts the information from
the geo-spatial data even though the user does not have
any knowledge on database and query languages. A speech
based method is proposed to extract the information and
it is not limited to length of the input text. The image is
very big such as 14000X64000 pixels. Targets are detected

by applying the trained deep learning models and target
information is stored in shape file and database. The data
in the database is not only huge but also diversified.
Extracting information from the diversified data is very
complex task as user does not know about the data. So,
queries should be generated for the specific database. The
model used for inference is trained based on (Vijender
et. al.). Since, remote sensing image is big, authors have
divided the image into equal dimension of length before
training and inference. Modified Faster-RCNN model is
used for airplane detection. Authors have tested the model
(Vijender et.al.) on different dimensions of images and
shown the precision, recall and accuracy parameters as
0.93, 0.85 and 0.79 respectively and authors also shown
that, model will work on multiple objects.

Deep Learning model inferences require lot of
computational power. However, recent advancements in
fabrication and hardware technology, many Edge devices
are available with CPU+GPU capable of deploying Edge
GPU clusters. This shift to Edge AI from high end servers/
cloud brings several key benefits including low power,
latency, bandwidth and cost. Proposed method is a
lightweight solution, can run on edge devices.

Methodological Framework

The aim of the methodological framework is to get the
information from the database with minimal knowledge
or no knowledge of DBMS (Database Management
Systems). Proposed Framework uses Speech Recognition
system which will take the input of a human voice and
convert the speech into text then to query the database.
By this, anyone can just obtain the results by just asking
some question to the machine and the whole speech is
converted into text and displayed the results.

Fig. 1 depicts the End-to-End framework which
contain Ortho image generation to Result for Analysis.
Proposed Framework is divided into Five modules, viz.
Target detection, Keyword detection in speech, Speech-
to-text, text-to-query and Query processing. It uses Deep
learning techniques for target detection and speech
recognition. This Framework works on embedded systems
for geo-spatial analytics. Data Processing Server is not
part of the proposed framework. However, It expects ortho
images from the data processing server.

The following sections contain detailed explanation
of each module.
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Target detection using Deep Learning

Satellite data is processed in Data Processing server,
which performs image processing operations and finally
creates a geo-tagged ortho image. These ortho images
are sent to AGX Xavier board for inference. The trained
models, which are trained for the targets as per the details
provided in Vijender et. al., are used to infer the geo-
tagged ortho-images. The detected targets are stored in a
shape file format. Since the data is very huge and the

quantity information of the detections is also very high,
inferred data will also be stored in the data base for further
analysis. All the target detections are stored in a particular
format defined by the database and this huge data
increases from time to time due to day-to-day satellite
data acquisitions. Extraction of the information from this
huge amount of data is very challenging. The advantage
of independent inference engine is that it does not use
the data processing server resources.

Speech to Text

In the digital world using voice command to operate a
device is more appreciated and convenient compared to
using mouse and keyboard. Speech recognition is a
complex task as the accent depends on geo-graphical
regions. Audio from the microphone is taken with the
environmental noise. The model is trained with various
noises so that model can recognize the voice even in
presence of noise. The trained two models for this module
Key do word detection and convert speech to Text. The
system searches for the keyword in the voice such as “ok
google” in the google speech recognition system.
Proposed Keyword detection searches for “Hey neo” in
the speech. Once the keyword is detected, the voice is
captured up to 5 seconds pause. The captured voice is
converted into text.

Text to Query

Querying a database is a difficult task, and can only be
written by a person who has a background knowledge of

Fig. 1: End-End Framework

the database. A person who does not have background
knowledge of the database, it will be difficult to formulate
a query and fetch results from the database. After
converting the speech to text, text will be in natural
language form. The text will be converted into a valid
query form by using a sequence model so that the database
can be queried. This task converts text into a structured
representation form understandable by data base.

Query Processing

This module applies the query on database to get the
formated results which will be used for analysis. The
results shown in in pictorial and text form so that the
user can perform better analysis.

Implementation

The developed and trained target detection models
(Vijender et. al.) are loaded into an embedded board such
as Tegra AGX xavier board (Fig. 2) (nvidia), which works

A Framework for Geo-spatial Analytics using Deep Learning
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as an inference engine to identify the targets on temporal
data. The embedded board is connected to satellite data
processing (DP) system through network interface and
the commands are triggered from DP system whenever
the geo tagged ortho image is formed. The inference
engine infers the image based on the parameters
mentioned in the DP systems trigger. The inference results
such as shape files and database are stored in the storage
due to less storage in the embedded board.

Fig. 2:  Nvidia AGX xavier board

Fig. 3:  Keyword detection

Fig. 4: Knowles board for Speech recognition

The key word detection submodule searches for
’Hey neo’ word in the speech to activate the speech to
Text module. The Keyword detection model works like a
classifier and has 2 different classes, the class which has
the wakeup word is labeled as 1 and the background sound
with all the words other than the wakeup word is labeled
as 0. The audio samples are recorded with both wakeup
word and also for the background data. The audio samples
are pre-processed for training. In pre-processing step, we
read the audio data using librosa library (librosa) and
calculates the Mel-frequency cepstral coefficients
(MFCCs) of the audio data, then it is converted into data
frame. A vanilla neural network model with three dense
layers with 256 units, two drop out layers with 0.5 drop
rate. RELU activation is used for intermediate layer and
softmax for the output layer. The goal is to predict whether
the input has wake up word or not. The prediction runs
on audio samples collected from Micro phone with
frequency 44100Hz. Trained model infer the audio
samples and produces the binary output of the audio clip
being a wakeup word or not. The sample testing of
keyword “Hey Neo” detection is shown in Fig. 3.

The performance of wake up word accuracy is
computed with number of correct predictions on total
predictions. The experiment with 100 test samples of ’Hey
Neo’ word is repeated ten times and average is taken.
The accuracy of wakeup word detection is computed as
88% which is quite good compared to (T. Ochiai et. al.).
We tested other than the wakeup word but none of them
are detected as wake up word. That means no false alarms.

After wake up word is detected Speech-to-Text
module will be activated. It record the audio up to 5
seconds pause comes. Since, lots of training data is
required for speech recognition model training, proposed
method uses Vosk toolkit (Alpha Cephei) developed by
Kaldi. It is a light weight, portable and popular speech
recognition software with Word Error Rate 70% (Alpha
Cephei). It provides pre-trained acoustic models that are
trained on large amounts of speech data for different
languages. These models serve as a starting point for
speech recognition tasks and can be fine-tuned or adapted
to specific domains or requirements. In this architecture,
we have used Indian english models. Keyword detection
and speech recognition softwares loaded into knowles
board (Fig.4) which contain raspberry pi3 and some audio
boards for collecting audio samples.

The Text to SQL query generation module includes
several preprocessing steps. First, it converts natural
language keywords into SQL-compatible terms. It also
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removes stop words based on a configuration file, which
includes common words like “about,” “am,” “in,” and
“on.” Next, the module identifies entities and nouns,
aligning the input sentence with existing columns and
tables in the database. An entity-column dictionary is then
created, which is essential for generating the SQL query.
This lightweight module can operate on a Knowles board
and generates standard SQL queries, eliminating the need
for continuous training. The resulting SQL query is
executed on the database, returning results in both visual
and file formats.

The target detection database comprises data on
airplanes, stored in JSON format, with fields including
Name, Date, Airport, Location, and Airplane. Each row
corresponds to a single Remote Sensing Image, built from
approximately 30,000 images of Cartosat 2 series data
using a target detection model. The database is populated
solely through the framework; manual insert commands
are not permitted. For example, when the input speech is
“Hey Neo, how many airplanes present at Hyderabad
Airport,” Text to SQL module preprocesses the input to
standardize terms - changing “Airplanes” to “Airplane”

and identifying “Name” as the image name with the date.
The intermediate output is transformed into: “Select Name
and Airplane from DL in Hyderabad Airport”. The final
SQL query generated is:

SELECT Name, Airplane FROM DL WHERE
Airport = ‘Hyderabad’;

Some standard inputs and corresponding outputs
are:

(i) Input: “Hey Neo, how many airplanes are
present at Hyderabad Airport from November 2019 to
August 2020”

Output SQL query: SELECT Name, Airplane
FROM DL WHERE Airport = ‘Hyderabad’;

The ‘From’ and ‘To’ dates will be used to filter the

results of the SQL query.
(ii) Input: “Hey Neo, how many airplanes are

present at Hyderabad Airport in January 2021”
Output SQL query: SELECT Name, Airplane

FROM DL WHERE Airport = ‘Hyderabad’;
Month will be used to filter the results of the SQL

query.

There are situations where the text-to-SQL module
cannot generate a query due to missing keywords or
incomplete input. For example, the input “Hey Neo, how
many airplanes are present at Hyderabad” lacks the
keyword “Airport”, so the module is unable to create a
corresponding SQL query.

Conclusion

In this paper, geo-spatial analytics architecture is
presented. Spatial data is huge and diversified. So, it will
be very difficult to extract information. The proposed
solution is a voice and text based query mechanism for

Fig. 5 : Output result screen
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users who do not have any knowledge on database queries.
The testing and accuracies show that the proposed
solution is performing well.

In future work, the models will be tested on Edge-
based GPU cluster to improve the performance and

reliability of the framework. The Edge-based GPU cluster
contains multiple GPUs connected in master and slave
configuration. Each module in the framework can be
assigned as a job to a node in the GPU cluster.
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Introduction

A tell or mound is an artificial topographical feature
consisting of the accumulated and stratified debris
indicating remains of a city or village, built and rebuilt at
the same site for thousands of years. Archaeological
remnants represent the architecture of any civilized

society of the ancient India. Archaeological mounds are
generally prominent or bold traces of past human
settlements on sedimentary terrains or arid, semi-arid
regions inhabited by once-lived ancient civilizations.
These mounds are mostly composed of earthen materials
such as mud bricks and pottery shreds that give a
significant color and surface texture to the soil. However,
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Abstract
________________________________________________________________________
Archaeological mounds represent the architecture of any civilized society of the ancient history.
These mounds are mostly composed of earthen materials such as mud bricks and pottery shreds that
give a significant color and surface texture to the soil. However, they are generally found to be
buried under the cover of recent sediments. Systemic excavation of archaeological sites helps us to
know the progressive evolution of human development and cultural civilization. Geospatial technology
plays a significant role for detection of these mound sites over a large area. This study illustrates a
unique and innovative approach to detect the archaeological mounds in Hanumangarh and Sri
Ganganagar districts of Rajasthan by using remote sensing data and GIS approach. As these mounds
have close association with various available thematic datasets such as, Land Use Land Cover (LULC),
Settlement, Palaeo channel, etc., Archaeological Survey of India (ASI) known sites such as Kalibanga,
Munda, etc. have been investigated to characterize a mound feature in the context of these thematic
datasets. A GIS model has been developed to incorporate these characteristics of mound on input
LULC layer. The model has been used to identify probable archaeological mound features in the
study area. Further, these mounds have been filtered by making visualization on high resolution
satellite images. A ground survey has also been conducted to validate some of the discovered sites in
Hanumangarh district. Electrical resistivity tomography (ERT) is a geophysical technique for imaging
sub-surface structures from electrical resistivity measurements made at the surface, or by electrodes
in one or more boreholes. Archaeological features can be mapped when they are of higher or lower
resistivity than their surroundings. High-Resolution Electrical Resistivity Tomography (HERT) survey
has been conducted at ASI known sites of Kalibangan for depiction of subsurface structures and
features in terms of variation of resistivity. The results are the tomograms showing exact locations of
the buried well, wall and kiln at 1-5m depth.

Keywords: Archaeological Mounds, DEM, High-Resolution Electrical Resistivity Tomography.
________________________________________________________________________



56

they are generally found to be buried under the cover of
recent sediments. Systemic excavation of archaeological
sites helps us to know the progressive evolution of human
development and cultural civilization. Archaeological
Society of India (ASI) is mainly responsible for
excavation and protection of archaeological sites. But,
still many of the sites remained unexplored in different
parts of the country due to lack of scientific investigation.
Hence, there is a need to unearth the archaeological
mounds along with their fortified sub-surface structures
of walls using high-resolution satellite images and
geophysical measurements.

Geospatial technology has been implemented on
remote sensing images to detect and map archaeological
mounds by many researchers. The use of remote sensing
images and geographic information system (GIS) platform
to identify archaeological features has been demonstrated
(Praveen G. Deshbhandari et al., 2023). An innovative
multisensory, multi-temporal and machine-learning
approach using remote sensing big data has been used
for the detection of archaeological mounds in the
Cholistan desert (Orengo et al., 2020). A virtual survey
of archaeological sites has been carried out by means of
detecting and mapping the ancient settlement mounds
(tells) by using the SRTM three-arc second terrain model
(Menze et al., 2006). Deep convolutional neural network
(CNN) technique has been ued for the automatic detection
of stone mounds from high-resolution satellite images in
four regions in the Altai Mountains (Chen et al., 2021).A
deep learning model is presented for detection of mounded
archaeological sites in Mesopotamian flood-plain (Luca
Casini et al., 2023). They illustrated the results obtained
by using pre-trained semantic segmentation deep learning
models. Marco Fiorucci et al. (2022) introduced two novel
automatic evaluation measures, designed to encode the
salient aspects of the archaeologists’ thinking process.
Abraham Resler et al (2021) presented an account of a
metric learning-based convolution neural network (CNN)
applied to an archaeological dataset. They used several
thousand artifact images, ranging from the Lower
Palaeolithic period to the late Islamic period to train the
model. The method presented by Kelsey M. Reese (2021)
offers an introduction to the application of deep learning
artificial neural networks to archaeological site
assemblages. Artificial neural network has been
introduced as a computational tool to utilize legacy
archaeological data for precisely and accurately
estimating dates of residential site occupation. Tapete et

al. (2021) used high resolution imaging capability
Synthetic Aperture Radar (SAR) constellation in his study
to generate DEM products of enhanced resolution to
undertake a systematic mapping of tells and
archaeological deposits. Trier et al. (2015) worked in
describing a processing chain for the semiautomatic
mapping of grave mounds from airborne laser scanning
(ALS) data. Davis et al.(2019) demonstrated semi-
automatic Object-based image analysis using lidar data
can provide a significant source of information about pre-
contact landscapes in heavily vegetated areas.

High resolution Electrical Resistivity Tomography
(HERT) is one of the non-destructive techniques to get
subsurface ground data at deep levels. The purpose of
electrical surveys is to determine the subsurface resistivity
distribution by making measurements on the ground
surface. Various electrical array configurations like
Wenner-Schlumberer (WS), Pole-Dipole, Pole-Pole etc.
may be applied in field for making observations. These
array configurations show different sensitivity to various
geological features and materials. Based on the geological
features, shape and material, different electrical arrays
are implemented which provide different depth of
investigation also. The distance between two electrodes
may also be varied to get different resolution of 2D
tomograms. HERT measurement is one the most suitable
method for exploration of subsurface archaeological
features because of its non-invasive approach to ground
objects. Zhao Wenke et al. (2018) carried out both the 2-
D and 3-D resistivity imaging to get a clear evidence of
structural details of the burial mounds.

Study Area

Hanumangarh district is positioned in the northernmost
part of Rajasthan (Fig. 1). It is surrounded by the state of
Punjab in the north, the state of Haryana in the east, the
districts of Bikaner and Sri Ganganagar in the west, and
Churu district in the South. It extends between 28046/

25.07// to 29057/26.90// north latitude and 73047/41.74// to
75031/58.70// east longitude. It covers an area of about
9,656 square kilometer. The district is a part of Thar desert
and is covered by thick layer of alluvium and aeolian
sand. Generally sand dunes have variations of 4 to 5 m in
height (CGWB report, 2013). Sri Ganganagar district is
also situated in the northern most part of Rajasthan. It
reaches out from 28042/30//to 30012/00// north latitude and
72039/15// to 74018/30// east longitude.
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Materials and Methods

Datasets used
Land use / Land cover map (LULC map)

LULC maps provide information regarding utilization of
land in various aspects and these also play a vital role in
the creation and implementation of development programs
and policies required for development and sustainable
growth of the land. In this study, Land use / Land cover
(LULC) data of Hanumangarh and Sri Ganganagar districts
at 1: 10,000 scale (source: Bhuvan) is used as a base layer.
Land cover class of archaeological mounds is mapped in
open and sparse scrub land class in LULC map.

Digital Elevation Model (DEM)

Archaeological mounds exist on undulating terrain land
surfaces which can be characterized using DEM data. The
Cartosat-1 Digital Elevation Model (CartoDEM) is a
National DEM developed by the Indian Space Research

Fig. 1: Location map of Hanumangarh and Ganganagar districts on LISS-IV Cartosat-1 Merged (2016) image

Organization (ISRO). It is derived from the Cartosat-1
stereo pair images launched in May 2005. Carto DEM
tiles with 30m posting at equator are freely available on
ISRO Bhoonidhi portal. For our current research purpose,
Carto DEM tiles of the study area have been downloaded.
We mosaicked all Carto DEM tiles covering both
Hanumangarh and Sri Ganganagar district.

Palaeo Channel

In ancient times, most of the civilizations were flourished
near river banks where sufficient water sources were
available. Many rivers, which were flowing in the past, \
have now disappeared completely or fully buried due to
some natural, tectonic as well as anthropogenic
disturbances. Traces of any palaeochannels nearby are
strong indicator of probable sites for mounds.The  palaeo
channels layer used in this study is generated based on
Saraswati palaeo channels data available on ISRO Bhuvan
Portal.

Study of High-Resolution Satellite Data and 2D/3D
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Settlement

Archaeological mounds are remnants of past human
settlements inhabited by once-lived ancient civilizations.
Hence these mounds have close association with existing
village settlements. Settlement data has also been used
to characterize a mound. In this study, settlement data
has been generated based on settlement layer available at
ISRO Bhuvan Panchayat Portal.

Methodology

Archaeological mounds have been characterized in terms
of various thematic layers viz. LULC, Palaeo channel,

Settlement and DEM by using all ASI known mound sites.
All known archaeological mounds are mapped in open
and sparse scrub land class in LULC map. These mounds
are located within buffer boundary of 2 km of existing
Settlement and buffer boundary of 5 km of Palaeo
channels. The area covered by the mounds has the height
variations with 5m or more. The area covered by a single
mound is less than or equal to 40 hectares. The
methodology has been developed as shown in Figure 2 to
implement these conditions. A GIS model has been
developed to implement the methodology. Finally, all the
detected mound sites are visually checked on high
resolution imageries and false mound sites have been
removed.

The methodology uses land use land cover mapped
at 1: 10000 scale as an input. Hence it is not able to detect
small mounds less than 0.1 hectare. Besides this, some
of the mound features are converted to agriculture land
or industrial land which is also not detectable by using
this method. It is also necessary to perform HERT survey
in clean atmosphere avoiding any rainfall or natural
calamity. The resistivity instrument should be properly

Fig. 2: Methodology Flow Chart

calibrated before using it in the field. Resistivity check
operation is performed for each electrode to check the
wire connections in proper condition.  The equipment is
not able to detect small size objects (<1m) buried under
ground surface. Similarly, electrode spacing should be
kept minimum to collect highly dense data points and to
increase accuracy of 2D tomograms.
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Results and Discussion

The developed GIS model was run by providing inputs
of LULC, Palaeo channel layer, Settlement layers and
mosaic of Carto DEM. By running the GIS model, we
extracted total 912 features fulfilling all criteria. These
features are manually inspected on high resolution image
and we extracted total 177 features as possible mounds
showing red colored tone on the image. The accuracy of
GIS model totally depends on accuracy of LULC data. In
total 177 features have been finalized as mounds after
applying all criterions of the methodology. These features
are shown with overlay of LISS-IV Cartosat-1 Merged
(2016) image as shown in Fig. 3(a). The merging of LISS-
IV & Cartosat-1 images provides 2.5m spatial resolution

multi-spectral images. A zoomed in view of marked red
circle is shown in Fig. 3(b), where polygons of mound
features are shown. Based on model output, few unknown
sites (Villages of Dabli Rathan, Lakhuwali, and Karnimata
temple in Hanumangarh district) have been inspected and
verified at field. The unknown mound sites are identified
as true mounds as these were also covered by broken
pieces of pottery shreds of red and black color, burnt
bricks of various sizes and partially exposed brick as
shown in Fig. 4. These mounds are easily identified on
land surfaces as elevated zones covered by pottery shreds
mixed with mud bricks as shown in Fig. 4(a) to 4(d).The
entire list of detected mounds with latitude and longitude
has been shared with ASI for further validation and
investigation.

Fig. 3: (a) Detected mounds shown in yellow color on LISS-IV Cartosat-1 Merged (2016) image
(b) Zoomed in view of red zone marked in (a), showing mounds near to Hanumangarh town

Fig. 4: (a) & (b) Field photographs of Karnimata Temple unknown mound site
(c) Field photograph of Lakhuwali unknown mound site (d) Field photograph of Dabli Rathan unknown mound site.

Study of High-Resolution Satellite Data and 2D/3D



60

High resolution electrical resistivity survey has
been conducted at Kalibangan (ASI known site) with prior
permission from ASI for extraction of subsurface features.
The IRIS Pro 72 of 10 channels was used for High
resolution resistivity survey and it has been carried out
for collecting data at well, fortified wall and kiln area
locations by using Wenner-Schlumberer (WS) and Dipole-
Dipole array configuration of 5m electrode spacing for
the total length of 55m. The well location was excavated
by ASI in earlier times and it has been covered by ASI
for protection of the site. The array configuration was
programmed using Electro Pro software and inserted into
the instrument. After performing the survey, data was
downloaded using Prosys software and data inversion
process was completed using RES2D Inv software. 2D
resistivity tomogram was generated by using inversion

process. The tomogram in Fig. 5 represents subsurface
resistivity data across the well location up to 12.5 m depth.
The tomogram shows high resistivity zone in middle of
top surface layer up to 5m depth and having width less
than 5m. The depth position and dimensions of the well
match with ASI records. This zone shows the existence
of material having high resistivity range from 74.0 to 131
Ω m used for construction of buried well. The material
used for construction of the well is burnt mud bricks made
by clay material (terracotta). The resistivity values of clay
material also fall in the same range. Hence, HERT survey
is able to identify high resistivity zone corresponding to
material of the structure. This zone is surrounded by two
low resistivity zones from 4.34 to 13.5 Ω m which
represents existence of alluvium material.

Conclusion

Archaeological mounds are readily visible due to their
prominence and shape, and the fact that they are composed
of accumulated debris of earthen materials such as mud
bricks and pottery shreds, which create distinguishing
color and surface texture over the soil surface. In this
project, Archaeological Survey of India (ASI) known sites
have been investigated to characterize mound in context

Fig. 5: Kalibangan ASI site and adjoining village shown on high resolution image, laying of electrical cable with 5m electrode
spacing and 2D tomogram showing well structure below ground surface

of various thematic layers viz. LULC, Settlement, Palaeo
channels and DEM. A GIS model has been developed to
incorporate the mound characteristics in GIS
environment. Further, these mounds have been filtered
by making visualization on high resolution satellite
images. Few unknown sites (Villages of Dabli Rathan,
Lakhuwali, and Karnimata temple in Hanumangarh
district) have been inspected and verified. The unknown
mound sites are identified as true mounds as these are
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covered by broken pieces of pottery shreds of red and
black color, burnt bricks of various sizes and partially
exposed brick which strongly points the existence of an
ancient settlement in past periods.

The High-resolution Electrical Resistivity
Tomography (HERT) survey has been carried out on
archaeological mounds of Kalibanga site to detect size
and location of well, kiln and fortified wall. The similar
exercise may be performed to detect buried objects in
unexcavated archaeological mounds. The methodology
developed in this project may be used to scale up in arid
and semi-arid regions of North-West India with the help
of line departments and other stakeholders to rejuvenate
ancient Indus river civilization (pre / post Harappan)
through development of geo-heritage sites and also to
address the availability of drinking water issues. Similarly,
machine learning approach with Random Forest
Classification may be implemented on cloud platform like

Google Earth Engine to process multi-temporal data.
Moreover, microwave satellite images may be used with
its distinct ability to identify high moisture zone and
particular surface features. The unknown mound sites
have reddish signature of broken pottery shreds similar
to ASI known sites. Hence, carbon dating of these pottery
shreds at unknown sites may be executed to determine
the age of organic material to establish a link with old
Indus Valley Civilization. As excavation of archaeological
sites is linked with old civilization and culture, it needs
immense care to protect old objects found on these sites.
HERT survey may be most suitable to detect buried
objects with maintaining its properties and characteristics.
Remote sensing also plays a major role to cover the large
area with its synoptic view capability. Hence, potential
of both remote sensing and HERT survey may be utilized
to detect unknown archaeological site and its sub-surface
structures with non-destructive technique.
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Introduction

Disease is one of the leading factors that affect the growth
and production of rice. Diseases in rice or paddy cause a
large quantity of loss in the grain yield. India is both the
leading producer and consumer of rice. Rice production
contributes a lot to the economic growth of the nation,
and it is a part of the staple diet of majority of the
population. India is the second-largest producer of rice
in the world after China. The major 5 states in rice
production in the country include West Bengal, Uttar
Pradesh, Andhra Pradesh, Punjab, and Tamil Nadu. More
than one-third of the world’s population and more than
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Abstract
________________________________________________________________________

India is a leading producer of rice that contributes a lot to its economic growth. Disease is one of the
leading factors that affect the growth and production of rice. Therefore, healthy growth and production
of the rice plants is very much essential. Hence, rice plant disease needs to be detected well in
advance so that the required treatment can be applied. In India most of the farmers are not that
equipped with basic education in this respect. Even for an educated farmer, correctly identifying the
paddy crop disease is not an easy task. Manual detection of these diseases costs a large amount of
time, money, and human resources, and requires the farmer to take external help from a professional,
who could guide them with the right treatment for their distinct plant’s specific issues. In case of
large farms, the manual detection process becomes lengthy and expensive. Thus, there is a sure need
of a more independent, fast, and automated system, that can help the farmers in detecting the disease
that their rice crops are suffering from, in a quick succession of time and at a comparatively less
price. Hence, in the present work an Artificial Intelligence (AI) enabled rice plant disease detection
system is developed that works on a smart phone. A Deep Convolutional Neural Network (DCNN)
is trained using various images of disease affected rice leaves. After successful training and testing,
the trained model is deployed into an android application, which would perform complete on-device
processing to detect the rice plant diseases. The proposed system provides around 96% accuracy on
the test dataset. The smart phone-based system would be easily accessible to the farmers and would
help them predict the disease in just one click and thus will save their time, money and effort.

Keywords: Paddy; disease; artificial intelligence; rice plant; deep learning.
________________________________________________________________________

half of India’s population depend on rice as their primary
source of nourishment (Statista, 2023). With more
advanced ways that are being introduced, the main motive
is to increase the production rates to even for higher
numbers. But one aspect that the farmers are still
struggling with, is the timely identification of the paddy
disease, such that they can save their crop from getting
destroyed. Every hour that passes due to the conventional
method of identifying the disease, matters a lot. In several
rice-growing ecosystems in the tropical and temperate
regions of the world, illnesses continue to be a puzzling
issue among the various biotic variables, limiting rice
output and productivity.
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Thus, to ensure healthy and proper growth and
production of paddy, it is very much essential to detect
the disease that the rice crop is suffering from, well in
advance so that required treatment can be done. There
are more than 20 different diseases in paddy that have
been detected so far and every disease has a different
treatment and way to cure. Therefore, identifying the
disease the paddy crop is suffering from, is not an easy
task. Manual detection of these diseases costs a large
amount of time, money, and human resources.
Additionally, farmers are required to take external help
from professionals, who would guide them with the right
treatment for their plant’s specific issues. If in case there
is a huge land area of a farm, then the manual detection
process gets even more time taking and expensive. Thus,
there is a sure need of a more independent, fast, and
automated system, that can help the farmers in detecting
the disease that their rice crops are suffering from, in a
quick succession of time and at a comparatively less price.

One device that has made it possible to reach even
into the most distant places, that has reached even to the
most remote area, is a smartphone. A smartphone has been
able to make its worth count to people of all professions,
ideologies, and beliefs and something that has gone into
the hands of people belonging to all strata, irrespective
of their financial position. Whether it is a rural area or a
well-developed city, low-cost smartphones are affordable
by everyone because of the technological advancement.
When smartphones have been able to creep so deep into
the hands of everyone, everywhere, one should be taking
the best use out of them. Machine Learning (ML) has
been able to find its application in almost all issues and
obstacles that humans are facing (Paul et al., 2022, Paul
et al. 2023a), then why not try to use this artificial
intelligence to solve the problems of the agricultural
sector, a very important part of our society. The enormous
variations in shape, size, texture, color, backdrop, layout,
and imaging illumination of plant diseases in a real-world
natural environment make identification challenging. The
convolutional neural network (CNN)-based methods are
most often used for classification of plant diseases because
of CNN’s excellent feature extraction capabilities
(Kanjilal and Paul, 2023). Many researchers made
advantage of CNN’s potent feature extraction capabilities
in the early studies on deep learning-based methods for
classifying plant diseases and pests. These techniques
were then integrated with conventional classifiers (Paul
et al., 2018). Before using a traditional machine learning
classifier for classification, the images are first fed into a

pretrained CNN network to get image characterization
attributes. The trials utilizing support vector machine
(SVM) classifiers with various kernels and feature
descriptors, verified the efficacy of the approach. Hence,
a convolutional neural network architecture is utilized to
extract the characteristics of images.

Ahmed et al. (2019) used different machine
learning algorithms including that of K-Nearest Neighbor
(KNN), Decision Tree, Naive Bayes and Logistic
Regression for detecting rice plant diseases. Wang et al.
(2021) proposed ADSNN-BO model on the Huy Do
(2019) Rice diseases image dataset. They also tested
VGG16, ResNet50, DenseNet121, MobileNetV1,
Inception V3, and Xception model. Sreejith et al. (2022)
performed detection by developing an enriched
neutrosophic C-means (ENCM) clustering. Prajapati et
al. (2017) applied Support Vector Machine (SVM) for
disease recognition on segmented image. Anandhan and
Singh (2021) performed the classification using Faster
R-CNN algorithm. For disease classification, a fully
connected layer followed by a SoftMax layer was placed
as the last layer of the CNN model to classify the plant
disease by Upadhyay et al. (2022). Five network structures
viz. ResNet, DenseNet, SENet, ResNeXt, and ResNeSt
were selected and tested by Deng et al. (2021). Ensemble
learning was carried out by combining the three best
network sub models out of the five sub models.
Shrivastava et al. (2019) used AlexNet for features
extraction and SVM for classification. Feature descriptor
viz. Kurtosis, skewness, cluster prominence, Local Binary
Patterns (LBP), Histograms of Oriented Gradient (HOG),
cluster shade and gray level co-occurrence matrix
(GLCM) texture are used followed by classification by
ML algorithms viz. SVM etc. in some of the studies
(Rumy et al., 2021; Saha & Ahsan, 2021; Shah et al.,
2016; Pothen & Pai, 2020; Dutta et al., 2021; Khan et al.,
2022). Inception ResNetV2 was applied by
Krishnamoorthy et al. (2021) whereas Joshi et al. (2022)
used CNN for the classification.

When an ML model is implemented into a mobile
application, the app is loaded with the model’s learnt
parameters. The app does not need to communicate with
a server to produce a prediction because it performs all
inference computations locally on the device. The primary
justification for performing inference directly on the
device is speed. The prediction occurs instantly with on-
device inference of ML models rather than requiring the
user to send a request over the internet and wait for a
response. Hence the proposed solution to the problem of
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rice leaf disease identification and classification is
implemented through a smartphone application. The ML
model is trained by using various images of disease
affected rice leaves including heathy leaves. After
successful training, the trained model is deployed into an
android application, which would perform complete on-
device processing for identifying the disease from an input
image of rice leaf. The Mobile Net Large V3 architecture
is used to obtain high accuracy in disease detection task
using smart phone. The main motivation of developing a
mobile application is to make the prediction model easily
accessible to the farmers and to help them predict the
disease in just one click and thus saving a lot of their
time, money, and effort. The subsequent sections of this
article describe the present work and its outcome in
details.

Materials and Methods

Data Base

The present work has been carried out using ‘Rice Leaf’s
5 diseases’ dataset of ‘Kaggle’ created and formulated
by Ade Fiqri (2023). The dataset comprises of a total of
2710 images in jpeg format. All the 2710 images have
been divided into two categories, namely train and
validation. The train folder has the images that would be
used for training the deep neural network and the
validation folder has images to validate/ test the
predictions made by the trained model. Both the train
and validation folders have six sub-categories each. The
6 sub-categories basically comprise of the different
disease names and are as follows – Bacterial Leaf Blight,
Leaf Blast, Leaf Scald, Narrow Brown Spot, Brown Spot
and the last one holding the images of healthy paddy
leaves. All the images have a dimension of 1600 X 1600
with a whitish background of different tone. Sample
images from each category are shown in Fig. 1, whereas
Table 2 presents the number of training and testing
samples used in the present work.

Methodology

The overall methodology involves two major steps: (i)
development of the deep learning model, and (ii)
development of the android application. Fig. 2 represents
the entire workflow of the proposed method. A two-
dimensional matrix f (x, y) with M columns and N rows
can be used to describe a digital image, with the
intersections of the columns and rows being referred to

as pixels (picture element) or the smallest component of
an image. There are several different color models used
in color picture processing. The present work considers
images of 224 X 224 dimensions. The RGB (red, green,
and blue) space considers three different color
components to represent images. In the present work RGB
images of paddy leaves are used to train the model as
well as to draw inferences.

Fig. 1: Sample data a-f Bacterial Leaf Blight, Leaf Blast,
Leaf Scald, Narrow Brown Spot, Brown Spot and healthy

paddy leaves respectively.

Table 1: Dataset Description

Fig. 2:  Flowchart of the Workflow

Disease Category  No. of Training 
Images  

 No. of Testing 
Images 

Bacterial Leaf Blight  350  88 
Brown Spot  373  93 
Leaf Blast  363  91 
Leaf Scald  358  90 
Narrow Brown Spot  352  88 
Healthy  371  93 

Total No. of samples  2167  543 

Disease Detection in Rice Plant using Artificial Intelligence
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Development of the Deep Neural Network Model

Supervised Classification is applied on the rice
leaf dataset to detect the five different categories
of paddy diseases and the healthy one. Since the
target model will be deployed in a smart phone
a light weight network is to be trained for this
purpose. Hence, in the present work Mobile Net
Large V3 architecture is used to train the
classifier. Mobile Net Large Version 3 is used for
performing the classification because of the given two
reasons – firstly, this model has proved to return very
high accuracy in various other image classification-based
projects that have already been developed. Secondly,
because Mobile Net Large Version 3 model works
efficiently in the mobile run times, within the constraints
of space and the processing requirements. This DNN
works with much efficiency with the performance
constraints of mobile runtimes. Mobile Nets are
architecture that have been introduced by Google, which
is a family of Computer Vision models that are based on
Tensor Flow.

In contrast to the hand-designed previous version
of Mobile Net, Mobile Net V3 relies on automated
machine learning (Auto ML) to find the best possible
architecture in a search space friendly to mobile computer
vision tasks. Auto ML is thought to be about method
choice, model hyper parameter adjustment, iterative
modelling, and model assessment. It aims to simplify
machine learning operations by using less code and
avoiding human hyper-tuning. The MobileNetV3
(Howard et al., 2019; Paul et al., 2023) search space builds
on multiple recent advances in architecture design that
has been adapted for the mobile environment. Firstly, a
new activation function called hard-swish (h-swish) has
been introduced which is based on the Swish nonlinearity
function. The critical drawback of the Swish function is
that it is very inefficient to compute on mobile hardware.
So, instead they have used an approximation that can be
efficiently expressed as a product of two piecewise linear
functions. Additionally, the mobile-friendly squeeze-and-
excitation block has been introduced, which replaces the
classical sigmoid function with a piecewise linear
approximation. Combining h-swish plus mobile-friendly
squeeze-and-excitation with a modified version of the
inverted bottleneck structure introduced in MobileNetV2
yielded a new building block for MobileNetV3 (Fig. 3).

Fig. 3: Mobile Net V3 block

In the present work the Mobile Net V3 is trained
using the training samples of the dataset and tested with
the testing samples. Subsequently, the performance of the
model is measured with respect to accuracy of detection.
The performance of the model is also compared with other
state of the art methods. After achieving satisfactory
performance, the model is considered for integrating in
the Android application for smart phone.

Development of the Mobile Application

Android Studio was used as the integrated development
environment (IDE) for developing and building the
android application, because of it’s convenient and
flexible editor. The task of development of the android
application starts with the creation of a new project. The
important prerequisite for making the app function
efficiently is to load all the necessary dependencies,
plugins, repositories, python, and machine learning
libraries (Paul et al., 2022a). The minimum software
development kit (SDK) version that the application will
function is in SDK version 29. The next important step is
to frame the design of the applications, with all the text
views, action buttons and image views, which is done in
the XML file. The python code for performing the image
preprocessing step is imported into the resources folder
of the android application and then the trained Mobile
Net V3 model in the tflite format is imported into the ML
resource folder of the android application. The java
programme controls every action button, image view, the
preprocessing and prediction. After all these steps are
carried out, the app is built and worked on a virtual
android device. After successful installation and working
of the app in the virtual device, it is made to be built in an
.apk format, such that it can be installed in a physical
android device with minimum SDK 29.

There are two action buttons in the application,
which are the SELECT button and the CAPTURE button.
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The SELECT action button, will trigger the action to lead
the user of the app to the gallery of the android device,
such that he or she can select the image of the rice leaf,
whose disease is to be detected and after the selection of
the image, the next automatic triggered operation would
be to put the selected image as input to the ML model.
The prediction made by the model is then displayed in
the text view. The function of the CAPTURE action button
is very much similar, with a slight difference that it allows
the user to capture an image using the android device
camera.

Results and Discussion

In the present work, firstly the deep neural network model
is trained using the training images and subsequently,
performance of the model is evaluated using the testing
dataset. The detailed description of the training and testing
dataset is given in the ‘Data used’ subsection of this
article. Finally, an Android application is developed that
helps in identification of paddy leaf disease with a smart
phone. The results are discussed in this section.

Model Performance

The number of epochs is a hyperparameter of gradient
descent that controls the number of complete passes
through the training dataset. The present model is trained
for 10 epochs to achieve a stable model performance with
increasing accuracy and decreasing loss. The present
model archives 95.50% accuracy with the testing dataset.
The performance of the present method is also tested with
other different models using the same dataset and their
results are analyzed and depicted in Fig. 4. After achieving
a satisfactory performance, the model is finalized to
deploy in an Android application.

Fig. 4: Model performance comparison

User Interface of the Mobile Application

The android application developed using the trained model
is deployed in a smart phone. Fig. 5 shows the user interface
of the application. The home page of the application is
having two action buttons: ‘SELECT IMAGE’ and
‘CAPTURE IMAGE’ (Fig. 5a). User can either select an
available picture of a rice leaf from the local device as
shown in figure 5b or can capture a new photo by the
phone’s camera through the app. This input image is
subsequently analysed by the system to identify the disease.
Finally, the predicted disease name is shown on the screen
along with the input photo of the rice leaf (Fig. 5c).

Fig. 5: User interface of the mobile application: (a) The
home screen of the application to capture/ select an image of
rice leaf, (b) Option for selecting available picture from local

device, (c) System predicted disease name is shown on the
screen along with the photo of the input rice leaf

Conclusion

The present deep neural network gives better output for
disease prediction in rice plant using Mobile Net V3
architecture compared to other tested methods. Moreover,
it works efficiently within the constraints of a mobile
device, providing it an edge over other deep learning based
models. One of the most sophisticated mobile computer
vision architectures is still Mobile Net. The present work
achieved a good accuracy for on-device rice plant disease
detection from the affected rice leaf photo. In future, more
disease type may be included by enhancing the training
dataset for developing more generic application for this
purpose. The present version of the mobile app works
independently without being connected to the Internet.
However, if the disease name along with the location
details of the mobile device is collected systematically at
a centralized server, a spatial map of rice plant disease
can be created to help which would serve as an important
input in monitoring the rice plant disease status at spatio-
temporal dimension.

Disease Detection in Rice Plant using Artificial Intelligence
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Introduction

Water is crucial for all forms of life, including human
existence. The prevailing natural aridity has led to a severe
shortage of freshwater in Rajasthan, particularly in its
western part. The groundwater in this part of Rajasthan
is both deep and rapidly depleting due to overexploitation,
and it is of poor quality, posing significant health risks to
the local population. In this area, groundwater serves as
the primary resource for numerous industries, with
irrigation accounting for the majority of its usage (Singh,
2023). This research is targeted to examine the effects of
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Abstract

During the last few years modern facilities have brought about significant changes in the lives of
people as well as many job opportunities. This study aims to find out the effects of 35 years’ worth
of groundwater table up-down in the study area during pre and post-monsoon timespan. Earth’s
interior, soil taxonomy, physiography and changes in land utilization, all impact the infiltration
capacity, which determines the groundwater depth. The present study intends to conduct a spatial-
temporal analysis of ground water status in Nagaur district of Rajasthan during 1985-2020. The
main sources of water resources in the district are rainfall and groundwater. But, rainfall occurs only
during two months of the monsoon, during which there are very few rainy days. Thus, the entire
geographical situation is impacted by the reliance on subsurface water resources. The study has
examined the groundwater situation, its causes, its effects on the local economy and community, and
it also tries to provide some suitable solutions. The findings are expected to assist the decision-
makers in crafting water policies that are suited for the local population’s well-being. With a water
level depth of<10 mbgl, the 1985 result indicates that the depth of the water level was quite promising
for the entire Ladnu block. In 2020, the number of wells with a water level depth of less than 10
meters below ground level (mbgl).is limited to three in the north side of the Ladnu block, two in the
middle of the Degana block, and two in both the northern and southern parts of the Nagaur block.
The portion which has a water level depth of more than 60 mbgl appears to have devoured the
remainder of the district. The relationship between irrigation and groundwater depletion, which has
impacted crop output, is evident in the cropping and irrigation patterns in the district.

Keywords: Water Table, Water Level, Infiltration, Spatial, Temporal, Pre & Post Monsoon.

variations in the groundwater table in Nagaur district of
Rajasthan before and after the monsoon seasons. Factors
such as earth’s inner activities, soil condition, physical
features, and changes in land use all influence the
infiltration capacity, which in turn determine the depth
of the groundwater. The study intends to understand the
spatial-temporal scenario of underground water in Nagaur
district during 1985-2020. To precisely find out random
values in some specific locations, one type of stochastic
model geostatistical analysis is considered useful (Uyan
& Cay, 2013). Geostatistical models are based on spatial

Indian Cartographer, Vol. 44, No. 1 & 2, pp. 70-80
ISSN: 0972-8392 © INCA, 2024



71

correlation, usually represented by variograms
(Wameling, 2003).

The Study Area

The study is carried out in Nagaur district of Rajasthan,
which is situated between 26°25/ N and 27°40/ N latitudes
and 73°10/ E and 75°15/ E longitudes, encompassing an
area of 17,778 square kilometer. It shares its borders with
Bikaner and Churu districts to the north; Sikar and Jaipur
districts to the east; Ajmer and Pali districts to the south;
and Jodhpur district to the west. It accounts for 5.2 percent
of the total area of Rajasthan. The district comprises 13
tehsils with their headquarters in Nagaur, Didwana, Merta,
Jayal, Nawa, Parbatsar, Degana, Ladnun, Makarana,
Khinwsar, Kuchaman, Riyanbadi, and Mundwa. It is
divided into 14 blocks (Panchayat Samitis): Nagaur,
Mundwa, Jayal, Merta, Riyan, Degana, Didwana, Ladnun,

Parbatsar, Makarana, Kuchaman, Nawa, Khinwsar, and
Molasar.

The district has an arid to semi-arid climate, with
a noticeable increase in rainfall over the past 30 years.
The analysis of data revealed normal rainfall during 1901-
1970 with 363.1 mm. The average annual rainfall for the
period 2012-2021 is found to be 496.04 mm as against
616 mm in 2021. This is indicative of a deviation of
41.08% from normal rainfall and 19.50% from average
rainfall. Due to its desert location, the district experiences
extreme heat in summer and cold in winter. The
topography is relatively flat, with a westward slope and
elevations ranging from 250 meters above Mean Sea
Level (MSL) in the south to 640 meters above MSL in
the north. The district’s soil ranges from sandy loam to
clayey loam, and its general geological formation is
quaternary. Some areas have early Cambrian geological
formation, while others have Mesoproterozoic formation.

Fig. 1:  Location map of the study area showing geological formations
(Prepared by Author based on GSI Resource map)

Materials and Methods

The data for underground water status was meticulously
gathered from numerous wells in the Jodhpur region by

the dedicated team of the groundwater department. The
precise coordinates of the locations of wells were recorded
in degrees, minutes, and seconds, and then entered into
an Excel document. To ensure compatibility with GIS
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software, the coordinates were converted from the “DMS
format” to decimal degrees. The data was then exported
to a .csv format before being transformed into a shape
file format for further analysis. The groundwater level
data, along with the corresponding well locations, were
initially presented in x, y location format. Subsequently,
annual maps were created to visualize the pre and post-
monsoon groundwater levels, showing the spatial
distribution and seasonal fluctuations. These maps were
generated using the geostatistical toolbox in ArcGIS 10.5,
with Kriging employed as the interpolation method.
Kriging operates under the assumption that locations
closer to known points will have similar values to those
located farther away can be found in the neighboring
areas, indicating a consistent pattern across the region.

To validate the accuracy of the data, an “empirical
semi variogram” was utilized, and the resulting graph was
analyzed to assess spatial autocorrelation. This analysis
involved evaluating the line representing points in the
empirical semi-variogram cloud graph to identify the best
match. Additionally, the spatial autocorrelation between
predicted and measured locations was examined, and
Kriging weights were allocated to a variety of measured
parameters. The resulting water level maps for every year
effectively depict the spatial changes based on the
available well data. It was noted that the number of wells
with available data increased in recent years compared
to previous years, indicating an improvement in data
collection efforts.

Fig. 2: Flow chart of materials and methods

Results and Discussions

The Central Ground Water Board (CGWB) has
established a network of stations called National
Hydrograph Network Stations (NHS) for monitoring
Groundwater Level. As of March 31, 2021, the study area
comprises 36 such National Hydrograph Network
Stations, including 18 dug wells and 18 piezometers. The
data has been analyzed as discussed below.

Spatial Variation in Water Table

In 1985, the water levels in the Ladnu block were
generally favorable, with depths of less than 10 meter
below ground level (mbgl). Encouraging water level was
also observed in east Jayal and west Didwana. The
horizontal half of the Didwana block had a water level of
<20 mbgl before the starting of the monsoon, which
increased up to 30 mbgl in the post-monsoon season of
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the same year. Additionally, the conditions nearby
Kuchaman, Makrana, and Degana blocks appeared
favourable during before and after monsoon seasons.
However, the northern portions of Nagaur and Mundwa
showed discouraging scenario with water level depths >
60 mbgl.

The water level in 1990 is indicative of the area
with favorable water level, with most of the areas with

good water level spread around northern part of Ladnu,
east Nagaur, and western part of Jayal block, and around
the eastern Parbastar, west Nawa, and mid of Riya Badi.
Conversely, the area with low water levels appeared to
have expanded in the western part of Nagaur district.
However, in the post-monsoon season, some wells in the
western part showing a rise in water level.

Fig. 3: Spatial variation in Pre & Post Monsoon Water Level of Nagaur District, 1985

In 1995, during both seasons, an upliftment was
observed in the area with water levels exceeding 60 meter
below ground level (mbgl) in the middle part of the
district. Even wells with favourable depths of < 10 mbgl

also appeared to be shrinking. The data for before and
after the 1995 monsoon showed the highest positive
groundwater scenario in RiyaBadi, followed by other
locations, such as Phardod, Deh, Jhordaof Jayal,
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Kanwaladof Parbatsar, Palara, Meethdi, Nawa of Nawa
block, Koliya of Didwana, Upadara, Ledi of Ladnu, and
Anandpura. By the year 2000, the condition regarding
depth of water level got further worsened, with wells in
the northern part shrinking and the area with water level
exceeding 60 mbgl expanding to the west. Based on
current boundaries, the entire Khimsarpanchayat samiti,

southof Mundava, and eastern Merta experienced a
significant decline in groundwater level in 2000. A small
area near Riyanbari and scattered spots throughout the
district, such as Rodoo, Ledi, Upadara, Soneli, Phirod,
Phardod, and Deh, had water level up to 25 mbgl, which
is considered satisfactory. The remaining areas of the
district are in an alarming stage.

Fig. 4: Spatial variation in Pre & Post Monsoon Water Level of Nagaur District, 2005

In 2005, an increment in the depth of water level
between 15 and 20 meters below ground level (mbgl) was
noted in the southern part of the Riyan Bari block and
northern Ladnu and Didwana block during both pre and

post monsoon seasons. It was observed that the area under
the alarming water level depth had expanded, particularly
around the southern part of the Riyan Bari block and the
northern part of the Ladnu and Didwana blocks.
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Additionally, the western part of the district consistently
maintained a water level depth of above 60 meters below
ground level.

The 2010 data revealed an encouraging upliftment
in water depth level after the monsoon season in the
southern part of the Kheenswar block, which was
considered a rare phenomenon in recent years.
Furthermore, the wells in the northern part of Ladnu,
central part of Didwana, and Degana experienced a

motivating rise in water level, ranging between 10 and
20 mbgl.

In 2015, a sudden increment in the depth of water
level was observed in many wells north of the study area
in the pre-monsoon season. However, after the monsoon
period, the water level fell to a worrying stage of >60
mbgl. The consistent change in the water level depth in
2015 prompted a need for closer monitoring and analysis
in the affected areas.

Fig. 5: Spatial variation in Pre & Post Monsoon Water Level of Nagaur District, 2015

In 2020, the level of groundwater in the district
was found to be in a critical stage. Only 3 wells in the
northern part of Ladnun block, 2 wells in the middle
portion of Degana block, and 2 observing wells in both

the northern and southern parts of Nagaur block witnessed
a water level depth of < 10 meter below ground level
(mbgl). The rest of the district is likely to be facing water
level depths of > 60 meter below ground level (mbgl).
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Throughout 2021-22, on an average of 20 wells
were assessed at various intervals. The depth of nearly
all wells exceeded 10 meter, with the depth to water level
averaging between 10.3 meter below ground level (mbgl)

Fig. 6: Spatial variation in Pre & Post Monsoon Water Level of Nagaur District, 2020

Table 1: Well Wise Categorization of Depth to Water Level (DTWL) In Nagaur District, 2021-22

Source: Ground Water Year Book, 2021-22, Rajasthan

Sl. 
No. 

Point of Time 
for  

Observation 

No of 
well 

analyzed 

DTWL mbgl No of well in different Ranges 
Min Max 0 to 2 

(m) 
2 to 5 
(m) 

5 to 10 
(m) 

10 to 
20 (m) 

20 to 40 
(m) 

>40 
(m) 

1 May, 2021 21 10.65 112.1 0 0 0 4 9 8 
2 August, 2021 20 10.35 114 0 0 0 6 9 5 
3 November, 2021 21 10.65 115.1 0 0 0 5 9 7 
4 January, 2022 19 9.53 114 0 0 2 3 8 6 

and 113.8 mbgl. In May 2021, 43% of observations were
between 20 meter and 40 meter in depth, while 38% were
above 40 meter. By August 2021, 45% of observations
fell within the 20-40 meter depth range, with only 25%
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above 40 meter, suggesting a potential improvement
would be likely due to favourable monsoon conditions.
Finally, in January 2022, almost 10% of observations
displayed a positive shift into the 5 to 10meter range.

Groundwater Level Fluctuation

The fluctuations in groundwater levels are considered
important indicators of groundwater recharge and stress
on water resources. These fluctuations are influenced by
changes in groundwater storage that occur due to various
factors, including aquifer recharge and drainage.
Additionally, changes in pressure can result from water
mass loading and unloading above the aquifer surface.
These processes are important to monitor and understand
in the management of groundwater resources and the
assessment of potential impacts on the surrounding
environment.

In Nagaur district, the fluctuations in groundwater
level during 1985-2020 were calculated by comparing
the water level depth data of pre and post-monsoon
seasons. These fluctuations provide a clear image of the
groundwater scenario of each year. In 1985, the most

extreme groundwater fluctuations were observed in the
western part of the study area, particularly in the west of
Khinwsar block, with fluctuations ranging from -58.17
to -34.59 meter. The rest of the district experienced
fluctuations between -3.69 and 1.96 meter (Table 2).

By 1990, the groundwater level fluctuations had
changed significantly. The south-western part of Merta
block experienced the most negative fluctuations, ranging
from -14.95 to -5.33 meter. Most of the district
experienced fluctuations between -1.09 and 4.03 meter.
In 1995, the groundwater fluctuation scenario shifted, with
negative fluctuations moving from the western part of
the district to the central, southern and eastern parts,
ranging from -8.43 to -3.09 meter. Positive fluctuations
were observed in the most upper and the most lower parts,
ranging from 2.14 to 5.89 meter.

The year 2000 saw erratic groundwater level
fluctuations, with most of the central and eastern parts
experiencing negative fluctuations ranging from -2.93 to
-0.74 meter, and in some areas from -0.73 to 0.72 meter.
Only the westward side of Merta and Mundwa, and some
north-western part of Ladnu experienced positive
fluctuations of 7.23 to 15.09 meter.

Fig. 7: Pre & Post Monsoon Ground Water Level Fluctuation in Nagaur District, 1985
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In 2005, there was minimal negative fluctuation in
groundwater level, and it was mainly confined to the
western part of the district. Most of the region experienced
motivating fluctuation in both the pre-monsoon and post-
monsoon seasons. During 2010, the highest demotivating
groundwater fluctuation occurred in the western and
southern parts of the district, ranging between -18.58 and
-4.67 meter. The highest motivating fluctuation between
the pre-monsoon and post-monsoon seasons for 2010
ranged from 53.3 to 163.33 meter and was dispersed
around the south-western parts of the study area.

Fig. 8: Pre & Post Monsoon Ground Water Level Fluctuation in Nagaur District, 2005 & 2015

In 2015, negative fluctuation was centered near the
south-western part, encompassing the Merta and Mundva
blocks, with values ranging from -82.66 to -49.66 meter.
The entire eastern part of the district showed a hybrid
fluctuation ranging from -5.55 to -38.06 meter. For 2020,
the highest encouraging fluctuation values were found
near the south-eastern part, including Riyan Badi and
some parts of the Parbastar block, ranging from 2.8 to
5.68 meter. The discouraging fluctuation values ranging
from -5.32 to -3.2 meter were largely found in the middle
western part of the study area, including Mundwa and
Nagaur blocks.

Fig. 9: Pre & Post Monsoon Ground Water Level Fluctuation in Nagaur District, 2020
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Table 2 indicates that on an average of 20 wells were
examined over the decade spanning 2011-2021. The data
reveals that 59.26% of the wells experienced an increase
in water level, while 40.74% experienced a decrease. The
average recorded increase ranged from 0.22 to 11.21
meter, and the decrease ranged from 0.31 to 6.24 meter.

 
 

Sl. 
No. 

 
 

Period of Time  
for Observation 

 
No of 
well 

analyz
ed 

Range of Fluctuation (m) No. of Wells  
representing Fluctuation 

Total No. 
of  

wells Rise Fall Rise Fall 
Mini
mum 

Maxim
um 

Mini
mum 

Maxim
um 

0 
to 
2 

2 
to 
4 

>4 0 
to 
2 

2 
to 
4 

>4 Rise Fall 

1 During May, 2021 with 
Respect to Decadal Average 
of May (2011 To 2020) 

 
21 

 
0.45 

 
11.75 

 
0.08 

 
8.79 

 
3 

 
5 

 
4 

 
4 

 
2 

 
3 

 
12 

 
9 

2 During August, 2021 with 
Respect to Decadal Average 
of August (2011 To 2020) 

 
20 

 
0.15 

 
14.36 

 
0.5 

 
11.49 

 
1 

 
6 

 
4 

 
6 

 
1 

 
2 

 
11 

 
9 

3 During November, 2021 with 
Respect to Decadal Average 
of November (2011 To 2020) 

 
21 

 
0.24 

 
9.35 

 
0.27 

 
9.83 

 
2 

 
5 

 
4 

 
6 

 
0 

 
4 

 
11 

 
10 

4 During January, 2022 with 
Respect to Decadal Average 
of January (2012 To 2021) 

 
19 

 
0.05 

 
9.39 

 
0.39 

 
4.88 

 
5 

 
4 

 
5 

 
2 

 
1 

 
2 

 
14 

 
5 

In January 2022, a remarkable 73.68% of the wells
recorded an increase in water level as compared to the
January average for the period 2012-2021. This
extraordinary improvement is attributed to exceptionally
good monsoonal rains in some years.

Table 2: Temporal Categorization of Water Level Fluctuation in Nagaur District, 2011-21

Source: Ground Water Year Book, 2021-22, Rajasthan

Conclusion

The foregoing discussion reveals that Nagaur district is
facing challenges of depleting water table and lower water
quality. Poor water management could lead to a severe
tragedy in the future. Hence, both the government and
the general public need to be aware of the importance of
conserving every drop of water. Water conservation is
necessary for its sustainability. To improve groundwater
resources, there is a strong need for a groundwater
recharge system, including rooftop rainwater storage, the
construction of various land barriers, dams, anicuts, and
other suitable recharge structures at appropriate locations.
Traditional water harvesting techniques used in the past

should also be revived. The government should encourage
community-based water management solutions like nadi,
nada, johad, talai, talab, khadeen, and individual practices
like ‘Tankas’ for rainwater collection. Modern irrigation
techniques should be promoted for the sustainable use of
water resources. High water-consuming crops should be
discouraged, and farmers should be motivated to grow
alternate low water-consuming crops. Additionally, high
water-consuming animal husbandry, especially buffalo
husbandry, should be replaced by low water-consuming
animals. The situation can be mitigated through
encouraging social forestry, saving orans, gochars, agores,
etc., and educating people through various awareness
programmes.
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