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Abstract 

Bamboo, renowned as the fastest-growing terrestrial plant, plays a pivotal role in enhancing 

carbon sequestration, ecosystem dynamics and livelihoods. India is the world's second-

largest bamboo producer, with North Eastern states contributing over 50% of the total 

output in national bamboo production. The major challenge in mapping bamboo distribution 

is due to time-consuming traditional visual interpretation methods and differentiating it 

from mixed forest composition. This study aims to leverage hyperspectral remote sensing to 

enhance the accuracy of classifying bamboo amidst mixed forest compositions. The study 

area encompasses the Nongkhyllem reserve forest and its surroundings in Ri Bhoi district, 

Meghalaya, characterized by a predominance of bamboo and mixed moist deciduous forest. 

Combining spectral (vegetation indices) and texture-based layers, alongside aspect (Carto 

DEM), a comprehensive input set was prepared for the machine learning-driven random 

forest classifier. Bio-chemical based vegetation indices along with principal component 

layers were found to be most important variables for bamboo classification. The outcome of 

the classification process showed 72% accuracy, which has further scope of improvement 

using high spatial resolution hyperspectral data. Notably, around 22% of the study area was 

categorized as pure bamboo growth area, while 6% fell under the mixed bamboo class. This 

study underscores the value of hyperspectral data and advanced machine learning tools in 

accurately demarcating bamboo-rich regions. The outputs hold significant promise for 

sustainable management and Sustainable Development Goals (SDG). As India embarks on 

ambitious projects to elevate bamboo productivity, the hyperspectral remote sensing-based 

mapping of bamboo growing area, could be pivotal in steering smart governance strategies, 

aligning with the government's larger objectives. 

Keywords PRISMA hyperspectral data, Bamboo, Multisource image database, Random 

Forest 

Introduction 

Bamboo, renowned as the fastest-growing terrestrial plant, plays a pivotal role in enhancing 

carbon sequestration, ecosystem dynamics and livelihoods. Bamboo is also referred as 

"Green Gold," because of its economic importance in diverse applications ranging from 

construction to handicrafts. Bamboo has been an essential resource for rural livelihoods and 

sustainable development. Bamboo is being used as a source of renewable energy, either as 

biomass for power generation or as a fuel for cooking and heating. Recognizing the immense 

potential of bamboo, the Indian government has undertaken various policy initiatives to 

promote its sustainable utilization and conservation. One of the most significant 

developments in this regard is the National Bamboo Mission (NBM, 2023), which was 

launched in 2018 as a component of the National Mission for Sustainable Agriculture 
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(NMSA). Considering the importance of bamboo resources, its mapping and monitoring is of 

utmost importance. The NBM aims to harness the potential of bamboo as a resource for 

enhancing livelihood opportunities and rural income, especially in the North East region of 

India. The region's topography, characterized by dense forests, hilly terrain, and abundant 

rainfall, provides an ideal environment for bamboo growth and boasts an extraordinary 

diversity of bamboo species. About 89 bamboo species out of 126 recorded in India under 16 

genera grow naturally in different forest types of this region or are cultivated across its 

tropical and sub-tropical belts.  

Remote sensing has been emerged as an important tool to map and monitor vegetation 

over a period of time using different techniques and method. Remote sensing satellites can 

provide images of the Earth's surface at different wavelengths, which can be used to identify 

and map bamboo forests. Several studies have been carried out using remote sensing 

technology to map and monitor, vegetation cover in North East India (Lele and Joshi, 2009; 

Roy et al., 2015; Roy and Joshi, 2022) while, very few attempts have been made to identify 

and map bamboo growing area in the region (Goswami et al., 2010). There are studies 

carried out globally and in India to map bamboo forest (Ghosh and Joshi, 2014; Du et al., 

2018; Nfornkah et al., 2020) however, these studies mainly involve the multispectral satellite 

data using traditional classification techniques like visual interpretation and traditional 

classifiers. The major gap lies with such technique in bamboo mapping is the time 

consumption and poor classification accuracy. Hyperspectral remote sensing is one of the 

techniques which have been used extensively for discrimination of vegetation species with 

advance classifiers (Jha et al., 2019; Kishore et al., 2020). However, the information on 

bamboo forest mapping is lacking. The present study was aimed to utilize the hyperspectral 

remote sensing imagery to discriminate bamboo growing areas from the mixed vegetation 

composition. Machine learning algorithm was used for classification of bamboo forest. 

 

Materials and Methods 

Study Area: The present study was conducted in the Tropical Moist Deciduous Forest of 

North East India, situated between 25.97°N and 91.81°E to 25.78°N and 91.92°E in the Ri 

Bhoi district of Meghalaya (Figure 1). The study area encompasses the Nongkhyllem Reserve 

Forest, characterized by its hilly and rugged terrain with steep slopes. The study area also 

includes Nongpoh town, serving as a district headquarters. Due to disturbances in the forest 

caused by human activities in populated areas, bamboo growth has been observed. The 

major bamboo species in the study area include Dendrocalamus strictus, Bambusa tulda, and 

Melocanna baccifera. The climate of the area is tropical monsoon, featuring hot and wet 

summers and cool and dry winters. The average annual rainfall is approximately 2,500 mm 

(Forests & Environment Department, Government of Meghalaya, 2023). 

 

Materials used: In this study, a comprehensive dataset was employed, comprising satellite 

data, ancillary data, and ground truth data to facilitate a thorough analysis. The spatial 

resolution of the Carto DEM (Digital Elevation Model) used in the study was 10 meters, 

providing detailed topographic information. The hyperspectral data utilized in the study was 

PRISMA (PRecursore IperSpettrale della Missione Applicativa) satellite data of March 6, 2022 

downloaded from the PRISMA mission website (PRISMA, 2022). The specification of PRISMA 

data is shown in Table 1. Additionally, ancillary data in the form of the Forest Survey of India 
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(FSI) forest cover map was incorporated. Ground truth data played a crucial role, providing 

location information pertaining to the various species present in the study area. This multi-

faceted approach, integrating diverse data sources, aimed to enhance the precision and 

reliability of the study's findings. 

 

 
Fig. 1 Geographic location of study area (a) Meghalaya state in India (b) Districts in Meghalaya state 

(c) study area in Ri Bhoi district of Meghalaya (d) False Color Composite of PRISMA hyperspectral data. 

 

Table 1. Specification of PRISMA hyperspectral sensor (Coppo et al., 2019). 
Sr. No. Description Value  

1 Scene size 30 Km 

2 Pixel size nadir 30 M 

3 FOV 2.4 Degrees 

4 Spectral range—VNIR 400–1010 Nm 

5 Spectral range—SWIR 920–2505 Nm 

6 Spectral range—PAN 400–700 Nm 

7 Spectral resolution—VNIR ≤13 Nm 

8 Spectral resolution—SWIR ≤14.5 Nm 

9 Spectral resolution—PAN ≤13.5 Nm 

10 Number of spectral bands— VNIR 66  

11 Number of spectral bands— SWIR 174  

12 Spatial resolution—VNIR-SWIR                   30 m/px 

13 Spatial resolution—PAN 5 m/px 

14 SNR—VNIR >160 (>450 at 650 nm)  

15 SNR—SWIR >100 (>360 at 1550 nm)  

16 SNR—PAN >240 

17 Absolute radiometric accuracy Better than 5%  
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Methodology: The study harnessed Level 2D PRISMA data, which is a geocoded atmospheric 

corrected product. Leveraging the prismaread package (Busetto, 2020) within the R 

environment developed for converting and importing the hyperspectral data, both the 

hyperspectral and panchromatic bands were extracted. The study area of interest was then 

clipped from these datasets. The extraction process involved an intricate fusion of 

information from the Forest Survey of India (FSI) forest cover map and the Normalized 

Difference Vegetation Index (NDVI) derived from hyperspectral data. This dual-source 

approach enabled the isolation of the vegetated area, which subsequently is the focal point 

for further analysis. For the mapping of bamboo growing area, input data is very crucial. In 

the present study different parameters viz. dimensionality reduction, Vegetation Index, 

texture, topography and spectral properties were considered and used for bamboo mapping.  

Dimensionality Reduction: As hyperspectral data has lot of information which is also 

embedded with the noise. Recognizing the vastness of hyperspectral data, Principal 

Component Analysis (PCA) was employed for dimensionality reduction. It is the most 

commonly used statistical approach for variable selection in highly correlated system 

(Navalgund and Ray, 2011). This step was crucial in distilling essential information from the 

entire dataset while retaining its inherent complexity. 

Vegetation Index: A spectrum of vegetation indices, reflective of both plant structure and 

biochemical components, were meticulously applied. The rationale behind each index's 

selection and its significance in characterizing vegetation dynamics within the study area 

were considered. A detailed list of these indices is thoughtfully presented in Table 2. All the 

VI layers were preceded for the correlation analysis to reduce the redundancy in the data. 

 

Table 2. List of Vegetation indices used in the preset study. 
Sr. 

No. 
Vegetation 
Index  

Description Formula Reference 

1 EVI Enhanced Vegetation Index 2.5 * ((R800 - R670)/ (R800 - (6 * R670) - 
(7.5 * R475) + 1)) 

Huete et al., 
1997 

2 gNDVI Green NDVI (R750 - R550) / (R750 + R550) Datt, 1998 
3 hNDVI hyperspectral NDVI (R827 - R668) / (R827 + R668) Oppelt, 

2002 
4 LCI Leaf Chlorophyll Index (R850 - R710) / (R850 + R680) Datt, 1999 
5 LWVI1 Leaf Water Vegetation Index (R1094 - R983) / (R1094 + R983) Galvo et al., 

2005 
6 MCARI Modified Chlorophyll Absorption 

in Reflectance Index 
((R700-R670) - 0.2*(R700 - R550))*(R700 
/ R670) 

Daughtry et 
al., 2000 

7 MCARI1 Modified Chlorophyll Absorption 
in Reflectance Index 

MCARI1=1.2*(2.5*(R800-R670)-
1.3*(R800-R550)) 

Haboudane 
et al., 2004 

8 MCARI2 Modified Chlorophyll Absorption 
in Reflectance Index 

MCARI1=1.5*(2.5*(R800-R670)-
1.3*(R800-R550)) / ((2*R800+1) ^2-
(6*R800-5*R680^0.5)-0.5) ^ 0.5 

Haboudane 
et al., 2004 

9 MSAVI Modified Soil Adjusted 
Vegetation Index 

0.5 * (2 * R800 + 1) - ((2 * R800 + 1) ^2 - 
8 * (R800 - R670)) ^ 0.5 

Qi et al., 
1994 

10 MSI Moisture Stress Index R1600/R817 Hunt et al., 
1989 

11 MTVI Modified Triangular Vegetation 
Index 

1.2 * (1.2 * (R800 - R550) - 2.5 * (R670 - 
R550)) 

Haboudane 
et al., 2004 

12 MTVI2 Modified Triangular Vegetation 
Index 

1.5*(1.2*(R800-R550)-2.5*(R670-R550)) 
/ ((2*R800+1) ^2 - (6*R800 - 5*(R670 ^ 
0.5)) -0.5) ^ 0.5 

Haboudane 
et al., 2004 

13 NDLI Normalized Difference Lignin 
Index 

(log(1/R1754) - log(1/R1680))/ 
(log(1/R1754) + log(1/R1680)) 

Serrano et 
al., 2002 

14 NDNI Normalized Difference Nitrogen (log(1/R1510) - log(1/R1680)) / Serrano et 
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Index (log(1/R1510) + log(1/R1680)) al., 2002 
15 NDRE Normalized Difference Red Edge 

Index 
(R800 - R680) / (R800 + R680) 
 

Sims & 
Gamon, 
2002 

16 NDVI Normalized Difference 
Vegetation Index 

(R800 - R680) / (R800 + R680) Datt, 1999 

17 NPCI Normalized total Pigment to 
Chlorophyll Index 

(R680 - R430) / (R680+R430) Peñuelas et 
al., 1994 

18 OSAVI Optimized Soil Adjusted 
Vegetation Index 

(1 + 0.16) * (R800 - R670) / (R800 + R670 
+ 0.16) 

Rondeaux et 
al. 1996 

19 PRI Photochemical Reflectance Index (R531 - R570) / (R531 + R570) Gamon et 
al., 1992 

20 RDVI Renormalized Difference 
Vegetation Index 

(R800 - R670) / (R800 + R670) ^ 0.5 Roujean & 
Breon 1995 

21 SAVI Soil Adjusted Vegetation Index (1 + 0.5) * (R800 - R670)/(R800 + R670 + 
0.5) 

Huete, 1988 

22 SIPI Structural Independent Pigment 
Index 

(R445 - R800) / (R670-R800) Peñuelas & 
Filella, 1999 

23 TCARI Transformed Chlorophyll 
Absorption in Reflectance Index 

3 * ((R700 - R670) - 0.2 * (R700 - R550) * 
(R700/R670)) 

Haboudane 
et al., 2002 

24 TVI Triangular Vegetation Index 0.5 * (120 * (R750 - R550) - 200 * (R670 - 
R550)) 

Broge & 
Leblanc, 
2000 

 

Texture Analysis: To capture spatial intricacies, the panchromatic band underwent a detailed 

texture analysis was carried out using Gray-Level Co-occurrence Matrix (GLCM). It analyses 

an image's texture by calculating pairs of pixels with specific values and spatial relationship. 

Statistical measures, including mean, correlation, variance, homogeneity, contrast, entropy, 

second moment, and dissimilarity, were computed, providing a nuanced understanding of 

the textural features within the imagery. 

Acknowledging the nuanced relationship between vegetation growth and geographic 

factors, an aspect layer, derived from cartographic Digital Elevation Model (DEM), was 

incorporated. This layer played a pivotal role in discerning species distribution and ecological 

variations within the study area. Given the inherent differences in spatial resolutions among 

diverse data layers, a meticulous resampling process ensued. All layers were standardized to 

5m resolution, the highest among them, to ensure uniformity and prevent loss of critical 

information during subsequent analyses. Post-resampling, the layers were methodically 

stacked to create an integrated and harmonized database. This database formed the 

foundation for subsequent classification and mapping endeavors. The classification strategy 

was multifaceted, exploring various combinations of datasets. This included spectral 

reflectance, PCA, visible (Vis) layer, PCA and Vis integration, and PCA+Vis+texture layers. The 

objective was to discern the most informative layers conducive to accurate bamboo 

mapping. 

Real-world validation was ensured through the collection of ground truth (GT) data, 

encompassing diverse species and vegetation types. This dataset was then judiciously split 

into a 70:30 ratio, with 70% earmarked for model training and the remaining 30% for testing 

and validation. From the GT data, pure pixels in the image were identified using Pixel Purity 

Index (PPI). The output of the PPI was analyzed using n-Dimensional visualize and 

endmember of the spectrally pure pixels were identified. The endmembers were 

subsequently used for the classification purpose. Diverse classification algorithms, such as 

Spectral Angle Mapper (SAM), Support Vector Machine (SVM), and Random Forest (RF), 
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were systematically employed. The bootstrap method facilitated a robust assessment of 

each classifier, with the ultimate selection being guided by the minimization of classification 

errors. This rigorous approach ensured the selection of the most suitable classifier and best 

dataset for bamboo mapping. The accuracy of the bamboo mapping results was meticulously 

evaluated using the reserved 30% of the ground truth data. This step provided a robust 

validation of the classification outcomes and affirmed the reliability of the selected classifier 

for accurate bamboo distribution mapping within the study area. The broad outline of the 

methodology is presented in Figure 2.  

 

 
Fig. 2 Broad outline of the methodology used in the study. 

 

Results 

The several outcomes and finding generated during the study is as follows:  

Hyperspectral Dimensionality Reduction: Principal Component Analysis (PCA) plays a crucial 

role in visualizing hyperspectral data to extract detailed spectral information. In the current 

study, the results of PCA revealed significant information within the first two bands. The 

Eigenvalue curve, depicted in Figure 3, demonstrates a sharp decline, approaching zero, 

beyond the second band. Examining Figure 4a and 4b, which illustrate PC1 and PC2 

respectively, a distinct set of features emerges for each band. PC1 distinctly accentuates 

vegetated areas, showcasing its effectiveness in capturing spectral signatures related to 

vegetation. Conversely, PC2 accentuates non-vegetated regions, predominantly highlighting 

roads, settlements, and wastelands. The observed diminishing Eigenvalues after the second 

band suggest that subsequent principal components contribute minimally to the overall 

variance of the hyperspectral data. This highlights the efficiency of limiting the analysis to 



Proceedings of the 43rd INCA International Conference, Jodhpur, 06–08 November 2023.  144 

the first two principal components for meaningful insights into the spectral characteristics of 

the data. 

 

 
Fig. 3 Spectral curve of Eigen values derived from PCA run on the hyperspectral data (a) full range 
spectra with all the bands and (b) highlighted and enhanced spectra where high Eigen values are 
present up to 2 bands. 

 

Identification of pure pixel: Ground truth data were systematically collected within the study 

area to identify various Land Use Land Cover (LULC) classes, with corresponding locations 

meticulously recorded. The diverse LULC classes encompassed in this study include forest, 

bamboo, plantation, agriculture, water, urban, and non-forest categories. Notably, the 

identified forest in our study is of the semi-evergreen type, further categorized into two 

classes: forest type 1 and forest type 2, based on distinct species composition and 

dominance. Forest type 1 comprises species such as Terminalia chebula, Adina cordiafolia, 

Aesculus assamica, and Tectona grandis, with Adina cordiafolia and Albizia lebeck being the 

predominant species. On the other hand, forest type 2 consists of species like Schima 

wallichii, Shorea robusta, Gmelina arborea, Tectona grandis, Lagerstroemia parviflora, and 

Albizia lebeck, with Shorea robusta as the dominant species. The plantation category in the 

study area primarily consists of Areca catechu, which is prevalent but coexists with 

agriculture and urban land use classes.  

To distinguish these classes in the data, Minimum Noise Fraction (MNF) analysis was 

executed, and the results are portrayed in Figure 5(a). Five MNF bands exhibited minimal 

noise, featuring high eigenvalues, while the remainder demonstrated a subsequent 

decrease. Leveraging these MNF bands, Pixel Purity Index (PPI) was applied, and 

endmembers (pure pixels) were visualized in the feature space using n-Dimensional 

visualizer, as depicted in Figure 5(b). The color-coded endmembers effectively illustrate the 

separability among different classes. Notably, non-vegetated classes such as non-

forest/barren, water bodies, and urban features demonstrated distinct separations. 

Additionally, forest type 1 and forest type 2 exhibited clear separability using the identified 

endmembers. The pure bamboo class in the feature space displayed a close association with 

agriculture and mixed bamboo. Furthermore, the mixed bamboo classes were observed to 

be linked with forest type 1, aligning with the ground truth data. In the classification process, 

the endmembers assigned to a particular class served as the training input, ensuring a robust 

and accurate classification of the hyperspectral data. 
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Fig.  4 Principal components generated from hyperspectral data (a) PC 1 highlighting vegetation (b) PC 

2 – non vegetated area appearing in white color. 

 

Vegetation Index Database: In the current study, a total of 24 vegetation indices (VIs) were 

computed and subsequently correlated to assess redundancy among them. The exclusion 

criteria for redundancy were set at a correlation value exceeding 0.5. The correlation 

coefficients between pairs of layers were meticulously analyzed, and layers displaying 

multiple high correlations with others were omitted from further processing. The correlation 

heatmap, presented in Figure 6, numerically designates VI layers from 0 to 23, with diagonal 

values indicating perfect correlation (1) as they represent the same layer. The results 

revealed that 10 out of the 24 layers exhibited high correlation and were consequently 

excluded from subsequent analyses. The 14 remaining VIs, namely hNDVI, NDVI, MTVI, 

NDRE, EVI, MSI, LCI, MCARI, TCARI, NDLI, NDNI, SIPI, SAVI, and OSAVI, were identified as less 

correlated or unique. Figure 7 illustrates a false-color composite generated based on these 

shortlisted VIs, providing an overview of different feature classes within the study area. From 

the VI generated FCC, non-vegetated areas are distinctly highlighted in blue, attributed to 

the Multispectral Stress Index (MSI), which effectively accentuates stressed regions. The 

variation in green tones is particularly noteworthy, influenced by the red-edge band, a 

crucial element for discriminating between different plant species. 

 

Classification and Accuracy Assessment: In the current study, a supervised classification 

technique was used, involving the testing of different combinations of classifiers and input 

layers. The classifiers were applied to the training data using a 10-fold cross-validation 

process. Evaluating the spectral reflectance of features from hyperspectral data, the Spectral 

Angle Mapper (SAM) exhibited the highest accuracy at 53.01% compared to other methods. 



Proceedings of the 43rd INCA International Conference, Jodhpur, 06–08 November 2023.  146 

For Principal Component Analysis (PCA), the Support Vector Machine (SVM) achieved the 

highest accuracy, reaching 49.45%. Notably, the Random Forest classifier demonstrated the 

highest accuracy when the number of bands was increased, incorporating Vegetation Indices 

(VIs), a combination of PCA and VI, and a combination of PCA, VI, aspect and texture. The 

most accurate classification, reaching 72.19%, was achieved by combining texture, 

vegetation indices, aspect and PCA, utilizing the Random Forest classifier. A detailed 

breakdown of the accuracy of different classifiers using various input layers is provided in 

Table 3. 

 

 
Fig. 5 (a) Minimum Noise Fraction curve derived from hyperspectral data (b) Endmember (pure pixel) 

visualization in the feature space and its separability among the classes.  

 

 

Fig. 6 Vegetation index correlation matrix for 24 layers (0 to 23). The vegetation index corresponds to 

each number is 0 (gNDVI), 1 (hNDVI), 2 (TVI), 3 (NDVI), 4 (RDVI), 5 (PRI), 6 (MTVI), 7 (MTVI2), 8 

(LWVI1), 9 (NDRE), 10 (EVI), 11 (MSI), 12 (LCI), 13 (MCARI), 14 (MCARI1), 15 (MCARI2), 16 (TCARI), 17 

(NDLI), 18 (NDNI), 19 (SIPI), 20 (NPCI), 21 (SAVI), 22 (MSAVI), 23 (OSAVI). 
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Fig. 7 False Color Composite (FCC) of study area using different vegetation index (R: NDVI, G: NDRE, B: 

MSI). 

 

Table 3. Accuracy (%) of different classifiers using various input from multisource database. 

Sr. No. Input Layer 
Classifier 

SAM SVM RF 

1 Spectral (Hyperspectral)  53.01 51.52 46.21 

2 PCA  42.58 49.45 44.12 

3 VI database  58.69 61.16 63.36 

4 PCA+VIs  63.45 65.94 68.28 

5 
PCA+ VIs + texture + 

aspect 
65.85 70.45 72.19 
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Using the trained Random Forest classifier, the mapping of different Land Use Land 
Cover (LULC) classes was performed. The resulting classified map, encompassing all classes, 
is presented in Figure 8. The map illustrates that bamboo-growing areas are predominantly 
located in the reserve forest area, while mixed bamboo classes are mapped in the vicinity of 
urban and disturbed areas. The lower portion of the study area is primarily composed of 
agricultural land, with Forest Type 2 dominated by Shorea robusta. The largest area in the 
study area is occupied by Forest Type 1 (83.56 km²), followed by Forest Type 2 (59.99 km²). 
Bamboo-growing areas cover 22.85 km², while mixed bamboo occupies 5.85 km². The 
comprehensive distribution of different land cover classes in the study area is summarized in 
Table 4. These classification results not only provide a detailed understanding of the spatial 
distribution of various land cover types but also highlight the effectiveness of incorporating 
texture, vegetation indices, and PCA in improving classification accuracy, particularly when 
utilizing the Random Forest classifier. 

 

Identification of important variable and bamboo growing area mapping: The classification 

results revealed that the integration of multisource data is valuable for discriminating 

bamboo classes. To further enhance the study's precision, a variable importance analysis was 

conducted, as illustrated in Figure 9. The analysis identified PC 2, MCARI, NDRE, and TCARI as 

the most crucial variables for effectively segregating the classes. This underscores the 

significance of leaf pigments, particularly chlorophyll, in the discrimination of vegetation 

types. The wavelengths utilized in these indices (550nm, 670nm, 680nm, 700nm, 800nm) 

further emphasize the importance of specific spectral bands in distinguishing bamboo 

classes. 

 

Table 4. Area (km2) under different LULC classes of the study area. 

Sr. No. LULC Class Area  

1 Forest type 1 83.56 

2 Forest type 2 59.99 

3 Bamboo 22.85 

4 Mixed Bamboo 5.85 

5 Plantation 5.93 

6 Agriculture 43.08 

7 Water body 2.57 

8 Urban 6.87 

9 Non forest/Barren 9.30 

 

Moreover, structural indices such as MTVI, hNDVI, along with the Moisture Stress Index 

(MSI), demonstrated notable importance in vegetation discrimination. The inclusion of these 

indices signifies the role of structural characteristics and stress indicators in differentiating 

between various vegetation types. Additionally, the mean of texture analysis emerged as an 

important factor in bamboo mapping, providing insights into the spatial patterns and 

arrangements of bamboo vegetation. 
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Fig. 8 Classified LULC map using combined database of PCA, VI, aspect and texture (GLCM). 

 

 
Fig. 9 Importance of each input variables for classification using random forest classifier. 
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Utilizing the important variables identified PC 2, MCARI, NDRE, TCARI, MTVI, hNDVI, PC 

1, Mean of texture analysis, OSAVI, and NDLI; each with a node purity exceeding 400, 

representing one-third of the total node purity, a probability map for bamboo areas was 

generated using a Random Forest classifier. This analysis was specifically applied to areas 

classified as bamboo and mixed bamboo. The probability of bamboo presence in each pixel 

was computed. To assess the accuracy of the generated bamboo probability map, a field 

survey was conducted within the mapped bamboo probability areas. Validation was 

performed by generating and validating a total of 30 random points on the ground. The 

accuracy of the bamboo probability map was determined to be 82%. Figure 10 presents a 

high-resolution Google Earth image alongside field photos, showcasing the validation 

process and affirming the accuracy of the classified bamboo probability map when compared 

with ground truth data. 

 

 

Fig. 10 (a) Probability of bamboo growing area in the study area. (b) enhanced view of PRISMA 

hyperspectral data where field data was collected. (c) High resolution Google Earth image of the 

enhanced area. (d) classified bamboo probality map from 0 to 1 in the enhanced view. (e) field photo 

of the mixed bamboo composition. (f) pure bamboo forest patch phtograph as taken from the field 

and can be seen in the satellite data. 

This comprehensive analysis not only emphasizes the relevance of spectral features, 

such as leaf pigments and structural characteristics, but also highlights the importance of 

incorporating texture analysis for accurate bamboo discrimination. The study's findings 

contribute valuable insights into the key variables influencing classification outcomes and 

pave the way for refining and optimizing future vegetation mapping efforts. 

 

Discussion 

Bamboo conservation is important from the point of view of carbon sequestration and 

dependence of locals on it for livelihood. Many scholars have tried to map and document 

bamboo resources of north east region and have emphasized on conservation of bamboo in 

north eastern region. Kharlyngdoh et al. (2016) have documented important bamboo species 
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of North east India and suggested the conservation of Schizostachyumdullooa, an important 

bamboo species which has a spread of 2,678 ha area in Nongkhyllem area in Ri Bhoi district. 

Bamboo in many areas has been considered invasive also in North East India as it spreads 

and grows rapidly. The reason for more spread of bamboo in Ri Bhoi district could be due to 

high disturbance which was reported by Roy and Tomar (2000). The present study focused 

on utilizing hyperspectral remote sensing imagery to discriminate bamboo growing areas 

from mixed vegetation compositions, employing a machine learning algorithm for 

classification. The study underscores the limitations of traditional mapping techniques in 

bamboo identification and mapping, emphasizing the need for advanced technologies. 

Hyperspectral remote sensing, with its ability to capture detailed spectral information, 

emerges as a valuable tool. The study addresses the gap in the literature by highlighting the 

limited use of hyperspectral data for bamboo mapping, advocating for its superior 

capabilities in discriminating vegetation species (Tamang et al., 2022). 

Hybrid classification method using PCA, visual interpretation and GLCM was found to 

have highest accuracy for classification of Bamboo and mixed forest. PCA is an appropriate 

tool for hyperspectral image analysis as hyperspectral images have high dimensional data 

and only few components are actually important (Shabna and Ganesan 2014). The 

application of PCA in this study not only elucidates crucial information within the initial two 

bands but also aids in the differentiation of features such as vegetated and non-vegetated 

areas. These findings contribute to a comprehensive understanding of the hyperspectral 

data and its potential applications in environmental monitoring and land use classification 

(Gambardella et al., 2021). Further, to improve the classification, GLCM was used which 

added texture feature to the spectral feature. GLCM and PCA were also observed to be best 

combination of hyperspectral image classification with SVM classifier (Ding et al., 2020). The 

finding of the present study also showcases the highest accuracy of PCA classification using 

SVM classifier. In the present study a meticulous analysis of 24 vegetation indices was 

carried out, correlating them to reduce redundancy. This refined selection of VIs not only 

minimizes redundancy but also enhances the discriminative power of the analysis (Jopia et 

al., 2020). The chlorophyll pigment was found to be very useful in the discrimination of 

bamboo from other vegetation classes. The red-edge region in combination with other 

visible and near infrared region was very crucial in classification. Various studies (Prospere et 

al., 2014; Zulfa et al., 2020; Johnson et al., 2023) have highlighted the importance of 

chlorophyll in discrimination of vegetation.  

A supervised machine learning classification technique was found to provide more 

accurate bamboo growing area. The random forest classifier was found to have highest 

accuracy for bamboo mapping which has also been reported by various researchers around 

the world (Ghosh et al., 2014; Chen et al., 2018; You et al., 2020). The accuracy achieved by 

different classifiers, highlighting the efficacy of the Random Forest classifier when 

incorporating texture, vegetation indices, aspect, and PCA. The mapped LULC classes, 

including bamboo-growing areas and mixed bamboo, demonstrated the classifier's 

effectiveness in capturing the spatial distribution of different land cover types. The 

discussion highlights the achieved accuracy of 82%, affirming the reliability of the 

classification outcomes and the selected classifier for accurate bamboo distribution mapping 

within the study area. 
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Conclusions 

In this rapidly changing world, bamboo holds a unique position as a sustainable, 

renewable, and versatile resource. The study successfully demonstrated the effectiveness of 

PRISMA hyperspectral remote sensing data, coupled with machine learning algorithms, in 

discriminating bamboo forests in the North East India region. The integration of vegetation 

indices, texture analysis, and PCA proved crucial for achieving accurate classification, with 

Random Forest emerging as the most effective classifier. Future research could explore the 

temporal aspect of bamboo mapping, considering seasonal variations in spectral signatures. 

Additionally, incorporating advanced machine learning techniques and deep learning models 

could further enhance classification accuracy. Ground truth data collection could be 

expanded to cover a broader range of bamboo species, contributing to a more 

comprehensive understanding of bamboo distribution. 

The study's findings have implications for sustainable bamboo management, providing 

valuable insights for conservation efforts, livelihood enhancement, and policy formulation. 

As the National Bamboo Mission aims to harness bamboo's potential for rural income and 

sustainable development, the study's methodology and results contribute to the ongoing 

efforts in promoting the sustainable utilization of bamboo resources in the region. 
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